Solving A Cubic Polynomial | Inspired By Math Olympiads

Поделиться
HTML-код
  • Опубликовано: 24 ноя 2024

Комментарии • 17

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 2 дня назад +1

    If a=172, x=-3
    If a=-63, x=-2
    If a=-14, x=-1
    If a=-1, x=0
    If a=0, x=1
    If a=13, x=2
    If a=62, x=3
    If a=171, x=4

  • @dan-florinchereches4892
    @dan-florinchereches4892 2 дня назад +1

    I think the left hand side is almost a perfect cube. If weultiply by 2 and subtract 1 from both sides:
    (2x)^2-3(2x)^2+3(2x)-1=2a+2-1
    (2x-1)^3-(2a+1)=0
    If y=2x-1 and t^3=2a+1
    y^3-t^3=0
    (y-t)(y^2+ty+t^2)=0
    y1=t 2x1-1=(2a+1)^1/3
    Delta=t^2-4t^2

    • @robyzr7421
      @robyzr7421 2 дня назад

      y^2 + ty + t^2 = 0 ->
      - t (+, -) [ t^2 - 4 t^2]^(1/2) / 2 =
      - t (+, -) [ - 3 t^2]^(1/2) /2 =
      - t (+, -) [ - 3]^(1/2)
      [ t^2]^(1/2) /2
      - t (+, -) [ - 3]^(1/2)[ t ] / 2
      😮

    • @leif1075
      @leif1075 11 часов назад

      I don't see anyone noticing the left hand is apmost a lerfect cube when it's not?

  • @pietergeerkens6324
    @pietergeerkens6324 3 дня назад

    Nice!
    I spotted Simon's Favourite Factoring Trick right off the bat, and so jumped straight to method 2.

  • @vaggelissmyrniotis2194
    @vaggelissmyrniotis2194 День назад

    Let f(x)=4x³-6x²+3x-1 which is increasing function for all reals and its domain is ( -inf,+inf) therefore for each real value of (a) there is only one solution.

  • @Don-Ensley
    @Don-Ensley 2 дня назад

    problem
    4 x³-6 x² + 3 x = a + 1
    Divide by 4.
    x³-3/2 x² + 3/4 x = (a+1)/4
    Remove the quadratic term by substitution.
    x = y + 1/2
    This results in
    y³ + 1/8 = (a+1)/4
    y³ = (2a+1)/8
    One obvious root is
    y = ∛(2a+1)/2
    Denote this as r.
    r = ∛(2a+1)/2
    Our equation is
    y³ - r³ = 0
    Recalling the formula for factoring the difference of 2 cubes:
    y³ - r³ = 0
    = (y-r)(y² +yr +r²)
    By the zero product property,
    y² + yr +r² = 0
    And by the quadratic formula,
    y = [ -r ± √( r²- 4r² ) ] / 2
    = -r / 2 ± √(-3 r²) / 2
    = -r / 2 ± i √3 r / 2
    = r { -1/2 ± i √3 / 2 }
    So all the y solutions are
    y = ½ ∛(2a+1)
    y = ½ ∛(2a+1) [-½ - i ½ √3]
    y = ½ ∛(2a+1)[-½ + i ½ √3]
    Back substitution gives us
    x = y +½
    x = ½ + ½ ∛(2a+1)
    x = ½ +
    ½ ∛(2a+1)[-½ - i ½ √3]
    x = ½ +
    ½ ∛(2a+1)[-½ + i ½ √3]
    answer
    x ∈ {
    ½ + ½ ∛(2a+1),
    ½ +
    ½ ∛(2a+1)[-½ - i ½ √3],
    ½ +
    ½ ∛(2a+1)[-½ + i ½ √3]
    }

  • @giuseppemalaguti435
    @giuseppemalaguti435 3 дня назад

    Svolgendo i calcoli l'equazione diventa (x-1/2)^3=(a+1)/4-1/8...

  • @scottleung9587
    @scottleung9587 3 дня назад

    Nice, but you should include the complex solutions.

  • @ajitandyokothakur7191
    @ajitandyokothakur7191 2 дня назад

    The second method is more elegant than the first one. Dr. Ajit Thakur (USA).

    • @leif1075
      @leif1075 11 часов назад

      Is it not a matter of opinion to some extent?

  • @jcfgykjtdk
    @jcfgykjtdk 3 дня назад

    I used second method

  • @WahranRai
    @WahranRai 3 дня назад +3

    Your solution is incomplete, you had given the real one : 2 other complex conjugate solutions are missing

    • @SyberMath
      @SyberMath  2 дня назад +1

      This channel is not about complex numbers. I have another channel for that:
      youtube.com/@aplusbi

    • @WahranRai
      @WahranRai 2 дня назад

      @@SyberMathYou present complex solutions well in your video:://ruclips.net/video/6GRA7zSEKDs/видео.html

    • @TedHopp
      @TedHopp День назад

      You didn't watch to the end of the video where he talks about obtaining the complex solutions with his second method.

    • @leif1075
      @leif1075 11 часов назад

      ​@@SyberMathbut wouldn't you agree no one would muktiply by 2 because it's not la perfect cube so isn't that method too contrived amd maybe even a cheat snd so shouldn't count? Why not factpr put the x minus 1 you can split it up into? Isnt that more valid? Hope you can respond