@@jesappellegroot4795 Bonjour, très difficile de savoir quelle dose vous avez reçu ! Cela dépend de la région étudiée, du type de scanner... Il existe des procédures basses doses...Normalement, la dose est indiquée sur le compte rendu lors de chaque examen. Et normalement, c'est obligatoire... Cordialement.
@@jesappellegroot4795 Bonjour, comme dit, il faut voir quelles sont les doses reçues indiquées sur les comptes rendus des scanner. On ne peut rien dire si on a pas cette info... Cordialement.
Je vous remercie infiniment, grâce à vous je comprends mieux ce que j'essaie d'apprendre depuis 2 semaines sans parvenir vraiment à bien saisir les informations et leur utilité, c'est incroyable !
Merci beaucoup, j'ai bien mieux compris les principes de base de l'IRM en 15 minutes grâce à vous qu'en 3 heures de cours de Master avec des équations de quantique à tout va. Vous avez une bonne pédagogie et vos cours sont bien imagés.
Un grand merci à vous pour ce travail sur l’Irm si bien résumé . Je sors de plusieurs jours de formation sur l.irm et vous avez été beaucoup plus clair
Bonjour, Merci infiniment pour votre vidéo, c'est très clair et motivant !! Vous m'avez aidé à comprendre mon cours de RMN sur lequel j'ai du avoir passé une bonne dizaine d'heures sans comprendre... merci 🙏🏼
Merci !! Un commentaire comme le votre est aussi motivant pour moi ! Cela me donne vraiment envie de continuer ! J'ai des vidéos en cours de préparation... A bientôt. Cordialement.
Merci beaucoup, c' est parfait. Je suis technicien supérieur Magor en radiologie et j'enseigne les étudiants paramédical, c' est magnifique, merci encore. Mr Talaoubrid.
Principes IRM excellente explication. IRM application de la physique quantique et les méthodes mathématiques de résolution numérique ;au service de la santé, bravo pour cette simplification et merci à tout les scientifiques qui ont contribué à cette machine.
Merci beaucoup pour cette vidéo!!!! J’avais beaucoup de mal à comprendre le fonctionnement de l’IRM et votre explication qui était très clair m’a permis de comprendre toutes les notions.
MAIS WHAOU ! Merci énormément monsieur ! vous venez de résumer en 15min la centaine de diapos que j'ai à apprendre sur le RMN ! Merci énormément c'était clair, simple, précis et en plus très bien illustré avec de belles images ! Merci infiniment !
Bravo pour vos vidéos sur l'imagerie médicale ! vos textes sont très clairs, et vos animations permettent de bien comprendre. J'ai particulièrement apprécié vos vidéos sur l'IRM, l'écho de spin, les contrastes. Superbe leçon pour les étudiants en médecine.
Ah merci, heureux que cela vous serve ! Nous sommes un peu embarqués sur d'autres projets mais de nouvelles vidéos sont quand même prévues. Cordialement
Bah c'est juste parfait !!! J'étais contrarié parce que j'ai pas compris cette leçon, mais maintenant je suis surpris à quel point c'est facile , merci bcq ❤️❤️❤️❤️❤️❤️❤️❤️
La meilleure vidéo pour l’explicitation de la physique quantique au service de l’IRM 😊 continuez à sauver nos études (et nos vies) avec vos vidéos ! Top !
Bonjour, merci pour la vidéo c'est très bien expliqué. J'ai une question concernant le passage à 7:52 J'ai compris que l'annulation du vecteur selon l'axe z est due aux changement de niveau d'énergie de certains noyaux suites à l'impulsion. Cependant je ne comprends pas quel est le phénomène physique à l'origine de la mise en phase des spin (et donc de l'apparition de la composante dans le plan (x,y)) ?
Bonjour, merci pour ces encouragements ! La question est très très bonne ! Dans ma vidéo, je reste sur une version "simple" du phénomène et qui permet surtout de bien appréhender l'inverse lors de la relaxation. Mais en fait, la répercussion de la résonance est plus complexe... En effet, il faut plus imaginer que c'est l'ensemble du système à l'équilibre (et donc M) qui bascule de 90°, y compris ce léger surnombre de spins dans la direction de B0 ce qui les convertit en fait en une "sorte" de mise en phase ! Je peux vous donner plus de détails (explications, schémas, analogie...) si vous voulez me contacter par le mail qui est sur le site web de PROMI, par exemple. Ou par Messenger.
Bonjour, J'ai quelques problèmes de compréhension qui font que je ne me figure pas comment on arrive à mesurer T1 et comment il se fait que la substance blanche, par exemple, apparaîsse en hypersignal. Prenons l'exemple de la substance blanche donc, qu'on opposera au liquide cérébrospinal : La substance à un temps de relaxation longitudinale rapide contrairement au LCR : en T1, pour conserver la différence de vitesse de relaxation Mz entre la SB et le LCR, on soumet le tout à un TR court -> C'est là que je peine à comprendre comment on maintient cette différence après l'impulsion à 90°. Le signal des protons du LCR qui n'ont pas eu le temps de se relaxer ne reste-t-il pas comme un résidu ? Dans ce cas, il devrait apparaître en hypersignal, non, au lieu d'être en hyposignal ? En espérant avoir été clair, car je précise que j'ai plus que des lacunes en physique, ce qui ajoute pas mal à l'incompréhension. Cordialement.
Bonjour, oui vous avez été claire. La question est légitime et je n'étais pas allé dans ce type de précisions dans une vidéo d'initiation... Comme vous l'avez compris, il s'agit de cycles qui sont séparés par le temps TR. Je m'explique : effectivement, la SB a un T1 plus court que le LCR. Et repousse donc plus vite. Si on prend un TR court, cette différence de vitesse de repousse apparaît bien (le tissu avec le T1 le plus court est le plus haut donc sera le plus blanc). Mais, comme vous l'avez vu, cette différence n'est pas mesurable dans la direction de B0). Il faut donc basculer dans le plan transversal (donc après ce TR court) avec une impulsion de 90°. C'est là que ça devient important : au moment de la bascule, la différence entre SB et LCR existe encore (le vecteur de SB est plus long que celui du LCR). Mais si on laisse la décroissance en T2 s'exprimer (car on est maintenant dans le plan transversal) cette différence va disparaître. Il faut donc mesurer le plus vite possible d'où le TE court. Le T2 n'aura pas eu le temps de s'exprimer (juste un peu) et ce sont bien les différences de T1 qu'on pourra mesurer. C'est pour ça qu'on utilise le terme "pondération" qui signifie "dépendant de". La mesure n'est pas "pure" : dans les différences de T1, il y a un peu de T2 (d'autant moins qu'on prend un TE court). Puis le cycle recommence et on refait la même chose. A chaque cycle on remplit une ligne du plan de Fourier. J'ai un schéma explicatif pour ça. Si vous voulez que je vous l'envoie, écrivez moi (via le site web par exemple). Je vous enverrai ça. J'espère que cela vous aidera. Cordialement.
Perdon si je pose trop de question et merci beaucoup j ai une question les Protons de l'atome d'H2 se comportent comme un aimant et sont aleatoire ( leur somme est nulle) apres l'application du champs B0 intense les protons prennent la direction de BO et se repartient selon deux niveaux d'energies E1 et E2 ( quel est le principe physique qui laisse les P se repartient en deux niveau d'E parallele et anti-paralleles) . Merci
En fait, il s’agit d’un état d’équilibre thermique : à température corporelle, la tendance naturelle des spins à se placer en position parallèle sur le niveau de basse énergie est contrebalancée par des mouvements thermiques qui tendent à égaliser les deux niveaux d’énergie. La résultante est donc ce compromis donnant un léger excès de protons en position parallèle.
j ai fais un irm ya peu et au niveau des jointure j ai vie c etait pas coller genre un espace... est ce que ca peu etre nocif ? g senti des sensations bizarre au niveau des veine du crane ..
@@promi2043 SVP, pourriez-vous faire une vidéo sur le fonctionnement des horloges atomiques ? Je comprends le principe de base : les vibrations des atomes de Césium 135 comme référence d'une seconde, mais je ne comprends pas comment ce principe se transforme en une horloge qui donne l'heure.
@@carlosdiniz6999 Bonjour, merci pour votre confiance ! Malheureusement, ce n'est pas du tout notre domaine. Nous sommes spécialisés en imagerie médicale, en particulier les techniques d'imagerie médicale, l'anatomie radiologique, par exemple. Cordialement.
@@promi2043 Merci d'avoir répondu. Vous expliquez le sujet d'une manière si compréhensible que j'ai pensé que vous pourriez aussi comprendre les horloges atomiques. Ce doit être une pensée magique de ma part.
@bbcourt5605 il y a 0 seconde Monsieur, je vous remercie très sincèrement et profondément, vous avez pu accompagner ma fille sur sa prémiere année de médecine, grâce à vos vidéos elle a véritablement compris ces chapitres liés à l irm, vos vidéos sont passionantes et ce n’est pas peu dire Encore merci du fond du cœur.
Bonjour j'ai fais un irm 3 tesla pour une nevralgie du trijumeau sans injection car je fais pas mal d'allergies pouvez vous me dire si les images seront quand même visibles merci beaucoup pour votre réponse
Bonsoir, alors T1 et T2 sont vraiment 2 paramètres indépendants. Pour l'eau par exemple, le T1 et le T2 sont longs. Pour l'os compact, c'est très particulier car il contient très peu de protons (densité protonique faible) et habituellement, on ne le voit pas en IRM (pas de signa). On ne peut le voir qu'avec des séquences spécifiques à TE ultra courts (UTE) (on voit parfois aussi le nom de ZTE pour zéro TE...). A ma connaissance, l'os cortical a un T1 court et un T2 très court... Il n'y a pas de relation entre T1 et T2 puisque ces temps de relaxation sont liés à des phénomènes différents. Cordialement
@@promi2043 Merci pour votre réponse, cependant il y a une question qui me torture l'esprit SVP et c'est pourquoi le T1 et T2 varient d'un tissu à l'autre ? N'est-ce pas la même atome d'hydrogène dont on parle ? Quelle relation entre la nature du tissu/sa teneur en protons et la longueur des temps de relaxation?
@@rayhanebenani395 Bonjour, bonne question, qui revient régulièrement ! Alors oui, ces paramètres concernent bien l'atome d'hydrogène. Mais T1, T2 et densité protonique (DP) sont bien indépendants et différents d'un tissu à l'autre. Pour simplifier : le T1 concerne les échanges d'énergie entre le proton et les tissus environnants (la relaxation T1 est aussi appelée relaxation spin-réseau). Le T2 concerne les rapports des protons entre eux, en gros parce que les différents tissus ne s'aimantent pas de la même manière (la relaxation T2 est aussi appelée relaxation spin-spin). Enfin la DP dépend de la quantité d'eau contenue dans les tissus. Il s'agit donc de 3 paramètres qui ont des origines différentes même s'ils concernent tous les 3 le noyau d'atome d'hydrogène. Cordialement.
Bonjour. J’ai subi 4 Irm cérébrales cette année a cause de concours de circonstance… je crains d’avoir des effets à long terme au niveau biologique à cause des champs électromagnétiques. Les médecins m’avaient dits qu’il n’y avait pas d’incidence mais j’ai pu voir que quelques études montrent un impact genotoxique… quelqu’un pourrait-il me renseigner? Merci.
@PROMI Merci, et pour mesurer le signal pondéré en T1 on doit le mesurer au début de la deuxième impulsion 90°, car au début de la première impulsion le signal est nul.
merci ce que j ai compris: lorsqu’on met une bobine selon l'axe xy on va mesurer un signal ( courant induit) dans ce cas le signal mesuré c'est le signal d'excitation. merci de me répondre à cette question la deuxième partie un peu difficile ( je vais essayer de la comprendre) Merci Beaucoup
Bonjour, effectivement, vous avez bien compris : on va bien mesurer le signal en mettant une bobine dans l'axe xOy, c'est-à-dire perpendiculairement à B0. Car on ne peut pas mesurer des différences d'aimantation dans l'axe de B0 (qui est très fort). C'est pour ça qu'on met la bobine dans l'axe xOy. Si vous avez d'autres questions, n'hésitez pas ! Cordialement.
merci; l'aimantation selon z est max mais les protons sont dephasés car les tissus sont differents ( un organe est constitué de tissu chaque tissu à un siganl different)... est il juste ce que je suis en train d'ecrire. ? merci de me rependre
Bonsoir, oui, c'est presque ça pour les déphasages. Dans l'aimant, les spins des tissus des organes acquièrent des aimantations différentes en fonction de leurs environnements (plus ou moins aimantés). Comme si on mettait ensemble de petits aimants de forces différentes qui agissent les uns sur les autres ! Ce qui explique ces déphasages... Cordialement.
Bonjour, merci pour votre intérêt pour nos vidéos ! Toutes nos vidéos actuelles (pour l'instant IRM et anatomie) sont disponibles sur la chaîne ruclips.net/channel/UC115O49OMUaLLffVm7iGz6g (le contraste en IRM, le signal, l'écho de spin, etc...). Pour l'instant, nous avons eu d'autres activités à faire avancer, en particulier la production de "serious games" (des jeux de plateaux) pour la révision des techniques d'imagerie avant de nous remettre à la production de vidéos. Cordialement.
En rapport avec ma réponse précédente... En fait, il faut regarder des images d'IRM de différentes régions anatomiques et voir quel est le signal des différentes structures : par exemple foie, rate, reins, muscle... car ils auront toujours des différences identiques d'une personne à l'autre, sauf variation ou pathologie : par ex surcharge en fer pour le foie... Cordialement.
Bonjour, merci beaucoup pour votre vidéo ! Sauriez vous m'expliquer comment ce fait il que l'impulsion RF mette tous les spin dans le même sens, ils ne sont plus en rotation avec pour moment angulaire w0 ? Merci d'avance 😁
Bonjour merci pour votre commentaire ! Vous voulez savoir pourquoi les spins se mettent en phase après une impulsion RF de 90°, c'est bien ça ? C'est une très bonne question pour laquelle la réponse est assez complexe à exprimer... On n'en parle jamais d'emblée dans les cours pour ne pas rendre la chose encore plus difficile ! Je peux vous donner des détails avec des schémas si nous échangeons par mail.. Est-ce que cela vous irait ? Cordialement.
Svp ,le prof de radiologie a posé dans l'examen le QCM suivant :les contres-indications de l'IRM sont:claustrophobie ,agitation ,est ce que je dois les cocher ou non ?parce qu'elle n'a pas désigné est ce que les CI absolues ou relatives.
Bonsoir, claustrophobie et agitation sont clairement des contre indications relatives ! La claustrophobie n’empêche pas forcément de faire une IRM. Cela dépend du niveau de claustrophobie, de la prise en charge…On peut éventuellement avoir recours à l’hypnose conversationnelle. L’agitation amène parfois à écourter un examen. Mais n’empêche pas forcément de le faire… Même pour des patients qui ont des mouvements involontaires (Parkinson par exemple, ou retard psychomoteur, etc…) on peut proposer un examen sous AG. Bref, pour moi ce ne sont pas des contre indications. Mais je ne sais pas ce que votre prof voulait vous faire dire… Cordialement.
Bonjour Charles, pas de problème ! Pondéré veut dire "dépendant ou fortement dépendant de"... En fait, les contrastes en T1, T2 ou en densité protonique ne sont jamais "purs". Par exemple, pour mesurer un contraste en T1, il faut mesurer le plus vite possible (avec un TE court) pour que le T2 intervienne le moins possible (mais il intervient quand même un peu). Vous pouvez peut-être regarder la vidéo qui parle du contraste...
Bonsoir, non, en fait, c'est une façon de parler du Temps de Répétition TR (TR ça fait aussi Temps de Repousse !). C'est le temps qu'on laisse aux tissus pour repousser plus ou moins (en fonction de leurs temps de relaxations respectifs, cad leurs T1). Pour obtenir un contraste en T1, par exemple, il faut que le temps de répétition (donc temps de repousse qu'on laisse aux tissus) soit court pour qu'on puisse différencier celui qui repousse vite (T1 court) de celui qui repousse plus lentement (T1 long). J'espère que ça va vous aider... Cordialement
Bonsoir PROMI, y'a t-il un moyen ou une astuce pour pouvoir connaître la longueur plus ou moins le T1/T2 selon le tissu donné ?? (À part la mémorisation par cœur)
Alors pas simple vraiment ! Car la structure des tissus biologiques est complexe (et pas forcément homogène) et les valeurs de T1 ou de T2 mesurés dépendent de l'appareil, des séquences utilisées, des personnes... Bref, il y a une forte approximation dans les valeurs qu'on trouve dans les tableaux, en fonction des auteurs... Ce qui est certain, c'est que les structures contenant de l'eau "libre" (LCR, urine...) possèdent des T1 et T2 longs. Les tissus contenant de grosses molécules ont des T1 plus courts... Et que les valeurs de T2 sont, en moyenne, 10 fois plus courtes que celles de T1. Plutôt que des valeurs, il faut juste savoir un ordre de grandeur et essayer de retenir des différences : par exemple, le T1 de la SB plus court que celui de la SG... Et voir région par région anatomique de cette manière. Il n'y a pas beaucoup de tissus différents visibles en fait... Cordialement
bonjour , je suis en prepa scientifique , et je veux faire une petite experience (tpe) pour modeliser l'IRM , est ce que tu peux m'aider par un petit montage elecrique qui modelise l'IRM. Merci beucoup .
Salut, alors pas évident de modéliser l'IRM sans aimant ! A faire simplement, je ne vois que l'induction électromagnétique qui simule la réception du signal... Mais ce n'est pas une particularité de l'IRM... Tout ce que nous faisons comme démos sur la RMN se fait quand même autour d'un aimant (0,1T)...
Bonjour, difficile de tout mettre dans la même vidéo… Mais le T1 et le T2 sont expliqués dans la vidéo « le contraste des images en IRM » sur notre chaîne. Vous me direz ce que vous en pensez. Cordialement
étant encore au lycée, je suppose qu'il est normal que je ne comprenne pas tout...Même si l'explication est très claire ! Je ne comprends pas de quelle manière l'impulsion RF rephase les protons déphasés
Ah oui ! Excellente question ! C'est un sujet qu'on aborde très, très loin dans les cours, car ce n'est pas évident... Parfois, ce n'est pas abordé du tout (on considère que c'est un fait...). Pour simplifier, il faut oublier un instant l'aspect quantique du phénomène. Et imaginer que l'équilibre "thermodynamique" qui est à l'origine du surplus de protons en position parallèle conduit à des vecteurs (individualisés) qui "regardent" globalement en direction de Mz (verticalement). Donc parallèlement les uns par rapport aux autres. Lors de l'impulsion RF de 90°, cet "ensemble" de vecteurs est "basculé" dans le plan horizontal et ils sont donc "parallèlement" dans le plan horizontal, donc en phase. Je disais que c'était compliqué ! J'ai des schémas qui explicitent ça.... On peut aussi expliquer ça mathématiquement avec les équations de Bloch (un des découvreurs de la RMN en 1946), mais cela dépasse de loin mes compétences ! Bravo de vous intéresser à l'IRM qui est un sujet passionnant. Cordialement.
Comment peut-on augmenter la sensibilité en IRM ? A : Travailler à un champ magnétique plus élevé B : Augmenter l'intensité des gradients de champ magnétique C : Utiliser une antenne IRM corps entier avec un diamètre largement supérieur à la taille du sujet D : Utiliser une antenne IRM corps entier adaptée à la taille du sujet E : Utiliser une antenne de surface la réponse SVP
Bonsoir, très bonne question ! Il y a pas mal de pistes parmi vos propositions ! Augmenter le champ statique effectivement. Mais lorsqu'on augmente le champ, les contraintes augmentent aussi : dimensions et poids de l'appareil par exemple. La puissance des gradients aussi, ce qui les rend plus bruyants... Bref, possible jusqu'à un certain point ! Pour les antennes : toujours utiliser des antennes de réception locales, adaptées à la région explorée : plus l'antenne est adaptée, meilleur sera le coefficient de remplissage (et donc le signal). Ensuite, on utilise des antennes en réseau phasé : beaucoup d'antennes de surface (une de vos solutions) de petit diamètre (ce qui augmente le rapport S/B, mais sur un petit volume, pour couvrir une zone plus grande. Par exemple, une antenne genou comprend souvent 16 éléments (donc 16 petites antennes de surface). En général, l'antenne corps ne fait que émettre les impulsions RF. Elle ne réceptionne pas le signal. Autre piste dont on parlait un moment donné : refroidir les antennes, ce qui pourrait augmenter aussi le rapport S/B. Mais c'est compliqué à faire ! Dernière piste que je vois pour l'instant : augmenter la sensibilité avec des produits de contraste. Il y a déjà des produits de contraste mais on pourrait peut-être aller plus loin avec l'hyperpolarisation. Voir cet article : www.inc.cnrs.fr/fr/cnrsinfo/une-imagerie-par-resonance-magnetique-10000-fois-plus-sensible Cordialement.
Bonjour, ah OK, je vois. Le champ de vue (ou FOV = field of view en anglais) correspond aux dimensions (en cm) de vos coupes. C'est-à-dire les dimensions de la zone que vous explorez. Par exemple un champ de vue de 25 x 25 cm (plutôt pour la tête) et 40 x 40 cm par exemple pour l'abdomen ou le thorax... Le champ de vue peut aussi être rectangulaire : par exemple 40 x 30 cm. Ensuite, si on rapporte les dimensions du champ de vue à la matrice, ça donne les dimensions des pixels de la coupe. Par exemple un champ de vue de 25 x 25 cm et une matrice de 256 x 256 : en divisant de champ de vue (25 cm ou 250 mm) par la matrice (256) on obtient un pixel de 250 mm / 256 = 0,98 mm soit environ un pixel de 1mm de côté. On prépare une vidéo sur pixels, voxels, etc... Cordialement.
Par rapport à votre question concernant l'écho de spin : il faut bien différencier ce qui concerne Mz (donc les niveaux d'énergie) de Mxy (les déphasages). Il faut les considérer comme 2 phénomènes différents (même s'ils se déroulent en même temps). Pour la conséquence de l'impulsion de 180° sur le plan transversal, la meilleure représentation est la "bascule" du plan de 180°, donc l'image "en miroir" comme je le disais dans la vidéo. Si vous voulez encore des précisions, vous pouvez me contacter sur mon mail en passant par le site web de PROMI (promi-imagerie.org/Contact/). J'essayerai de vous aider. Cordialement.
Merci beaucoup pour cette vidéo ! Vous êtes parvenus à me faire comprendre en 15 minutes que que mon professeur a essayé de m'expliquer pendant 2H ! Vous sauvez probablement ma session de janvier :) La seule question subsistant après cela est la valeur de gamma dans l'équation de la fréquence de Larmor. Je suis kinésithérapeute et malheureusement pas un poil physicienne. Je suppose que sa valeur coule de source vu qu'à partir de B0 il est possible de connaitre la valeur de f. Mais qu'est-ce que représente gamma ?
Magnifique! Je vous remercie:) Une grande aide pour tous les étudiants en médecine!
Merci ! C'est sympa !
@@promi2043 aider moi svp jai passer 10scanner jai pris de trop de radiation je risque quoi svp jai peur
@@jesappellegroot4795 Bonjour, très difficile de savoir quelle dose vous avez reçu ! Cela dépend de la région étudiée, du type de scanner... Il existe des procédures basses doses...Normalement, la dose est indiquée sur le compte rendu lors de chaque examen. Et normalement, c'est obligatoire... Cordialement.
@@promi2043 c scanner abdominal
@@jesappellegroot4795 Bonjour, comme dit, il faut voir quelles sont les doses reçues indiquées sur les comptes rendus des scanner. On ne peut rien dire si on a pas cette info... Cordialement.
Je vous remercie infiniment, grâce à vous je comprends mieux ce que j'essaie d'apprendre depuis 2 semaines sans parvenir vraiment à bien saisir les informations et leur utilité, c'est incroyable !
Merci, c'est sympa !!
Merci beaucoup, j'ai bien mieux compris les principes de base de l'IRM en 15 minutes grâce à vous qu'en 3 heures de cours de Master avec des équations de quantique à tout va. Vous avez une bonne pédagogie et vos cours sont bien imagés.
Merci, c'est sympa !! Cela nous encourage à continuer ! Avec mes collègues, nous avons des projets de vidéos en cours pour la chaîne. Cordialement.
Un grand merci à vous pour ce travail sur l’Irm si bien résumé . Je sors de plusieurs jours de formation sur l.irm et vous avez été beaucoup plus clair
Merci !!!
Très intéressant et super bien expliqué ! Je suis étudiante en médecine et vous avez certainement sauvé mon partiel !
Merci, c'est sympa !!
Bonjour,
Merci infiniment pour votre vidéo, c'est très clair et motivant !!
Vous m'avez aidé à comprendre mon cours de RMN sur lequel j'ai du avoir passé une bonne dizaine d'heures sans comprendre... merci 🙏🏼
Merci !! Un commentaire comme le votre est aussi motivant pour moi ! Cela me donne vraiment envie de continuer ! J'ai des vidéos en cours de préparation... A bientôt. Cordialement.
Merci beaucoup, c' est parfait. Je suis technicien supérieur Magor en radiologie et j'enseigne les étudiants paramédical, c' est magnifique, merci encore. Mr Talaoubrid.
Merci, c'est sympa !!
Principes IRM excellente explication. IRM application de la physique quantique et les méthodes mathématiques de résolution numérique ;au service de la santé, bravo pour cette simplification et merci à tout les scientifiques qui ont contribué à cette machine.
Merci, c'est sympa !
Merci beaucoup pour cette vidéo!!!! J’avais beaucoup de mal à comprendre le fonctionnement de l’IRM et votre explication qui était très clair m’a permis de comprendre toutes les notions.
Merci ! Ça fait vraiment plaisir de voir que c'est utile ! Cordialement.
Merci beaucoup grâce à vos explications j'ai enfin compris les principes de bases de l'IRM.
Que Dieu vous bénisse!
🙏
Merci +++ !!!
Bravo, j'ai à peu près tout compris . Expliquer quelque chose de complexe ,c'est un super challenge. Bravo monsieur.
Merci, c’est sympa !!
je suis en première année de médecine et vous me sauvez. Merci ! en plus c'est ludique et imagé donc on apprend plus facilement !
Merci, c'est super sympa !
Vraiment vos explications sont remarquables ! Meilleure vidéo d'imagerie de yt
Merci, c'est sympa !!
Je suis en deuxième année de DTS IMRT pour devenir manipulatrice radio et votre vidéo a super bien schématisé mes cours d'IRM, merci !
Merci, c'est sympa !!
J'ai qlq question sur ta spécialité, pouvez vous m'aider ?
Bonsoir, s'il s'agit de technique d'IRM, oui. Cordialement
Wahou je suis hyper content d'avoir regardé votre vidéo. J'ai bien assimilé. Mille mercis et que Dieu vous bénisse.
Merci pour ce commentaire ! C'est super sympa !
MAIS WHAOU ! Merci énormément monsieur ! vous venez de résumer en 15min la centaine de diapos que j'ai à apprendre sur le RMN ! Merci énormément c'était clair, simple, précis et en plus très bien illustré avec de belles images ! Merci infiniment !
Merci pour ce commentaire ! Cela fait vraiment plaisir de constater que ça sert ! C'est très motivant ! Cordialement
@@promi2043 votre vidéo servira à tous les étudiants en médecine en tout cas j'en suis sûr ! Encore bravo !
Que dieu te bénisse et t'accorde une longue vie
Cours incroyablement Simple ca fait du bien de pouvoir sortir la tête de l'eau
Merci !! C’est vraiment sympa ! Bonne continuation.
Bravo pour vos vidéos sur l'imagerie médicale ! vos textes sont très clairs, et vos animations permettent de bien comprendre. J'ai particulièrement apprécié vos vidéos sur l'IRM, l'écho de spin, les contrastes. Superbe leçon pour les étudiants en médecine.
Ah merci, heureux que cela vous serve ! Nous sommes un peu embarqués sur d'autres projets mais de nouvelles vidéos sont quand même prévues. Cordialement
Bravo et merci bien Mr....Je suis ingenieur Biomedicale en allemagne et j' ai encore beaucoup appris via vos differentes Videos!!
Merci pour ces encouragements ! C’est vraiment sympa !
Bah c'est juste parfait !!! J'étais contrarié parce que j'ai pas compris cette leçon, mais maintenant je suis surpris à quel point c'est facile , merci bcq ❤️❤️❤️❤️❤️❤️❤️❤️
Ah merci ! Ça fait vraiment plaisir !!
Superbe vidéo ! Très bien expliquée et schématisée ! Je vous remercie
Merci, c'est sympa !!
Merci pour cette présentation extrêmement claire et agréable !
Merci !!
La meilleure vidéo pour l’explicitation de la physique quantique au service de l’IRM 😊 continuez à sauver nos études (et nos vies) avec vos vidéos ! Top !
Merci pour votre commentaire ! C'est sympa !
tu viens de sauver une partie de ma P1 merci 1000 fois!!!
Merci pour les encouragements !!
Merci vraiment pour cette vidéo très didactique; c'est beaucoup plus facile à comprendre
Merci !! C'est sympa !
Cette vidéo est super, très claire et pédagogique !
Merci !!
Merci, c'est toujours un plaisir de t'écouter :)
Ah merci ! Ton commentaire me fait très plaisir !
Merci beaucoup j’ai bien compris grâce à vous ❤
Merci, c'est sympa !
parfait je vais réussir médecine grâce a vous c'est incroyable
Ah merci ! C'est sympa !
Bonjour, merci pour la vidéo c'est très bien expliqué.
J'ai une question concernant le passage à 7:52 J'ai compris que l'annulation du vecteur selon l'axe z est due aux changement de niveau d'énergie de certains noyaux suites à l'impulsion. Cependant je ne comprends pas quel est le phénomène physique à l'origine de la mise en phase des spin (et donc de l'apparition de la composante dans le plan (x,y)) ?
Bonjour, merci pour ces encouragements ! La question est très très bonne ! Dans ma vidéo, je reste sur une version "simple" du phénomène et qui permet surtout de bien appréhender l'inverse lors de la relaxation. Mais en fait, la répercussion de la résonance est plus complexe... En effet, il faut plus imaginer que c'est l'ensemble du système à l'équilibre (et donc M) qui bascule de 90°, y compris ce léger surnombre de spins dans la direction de B0 ce qui les convertit en fait en une "sorte" de mise en phase ! Je peux vous donner plus de détails (explications, schémas, analogie...) si vous voulez me contacter par le mail qui est sur le site web de PROMI, par exemple. Ou par Messenger.
vous êtes incroyable sachez le
Merci pour votre temps
Merci !!!
Bonjour,
Je voulais vous remercier. J'ai compris le fonctionnement de l'IRM.
Merci, c’est super !
Bonjour,
J'ai quelques problèmes de compréhension qui font que je ne me figure pas comment on arrive à mesurer T1 et comment il se fait que la substance blanche, par exemple, apparaîsse en hypersignal.
Prenons l'exemple de la substance blanche donc, qu'on opposera au liquide cérébrospinal :
La substance à un temps de relaxation longitudinale rapide contrairement au LCR : en T1, pour conserver la différence de vitesse de relaxation Mz entre la SB et le LCR, on soumet le tout à un TR court -> C'est là que je peine à comprendre comment on maintient cette différence après l'impulsion à 90°.
Le signal des protons du LCR qui n'ont pas eu le temps de se relaxer ne reste-t-il pas comme un résidu ? Dans ce cas, il devrait apparaître en hypersignal, non, au lieu d'être en hyposignal ? En espérant avoir été clair, car je précise que j'ai plus que des lacunes en physique, ce qui ajoute pas mal à l'incompréhension.
Cordialement.
Bonjour, oui vous avez été claire. La question est légitime et je n'étais pas allé dans ce type de précisions dans une vidéo d'initiation... Comme vous l'avez compris, il s'agit de cycles qui sont séparés par le temps TR. Je m'explique : effectivement, la SB a un T1 plus court que le LCR. Et repousse donc plus vite. Si on prend un TR court, cette différence de vitesse de repousse apparaît bien (le tissu avec le T1 le plus court est le plus haut donc sera le plus blanc). Mais, comme vous l'avez vu, cette différence n'est pas mesurable dans la direction de B0). Il faut donc basculer dans le plan transversal (donc après ce TR court) avec une impulsion de 90°. C'est là que ça devient important : au moment de la bascule, la différence entre SB et LCR existe encore (le vecteur de SB est plus long que celui du LCR). Mais si on laisse la décroissance en T2 s'exprimer (car on est maintenant dans le plan transversal) cette différence va disparaître. Il faut donc mesurer le plus vite possible d'où le TE court. Le T2 n'aura pas eu le temps de s'exprimer (juste un peu) et ce sont bien les différences de T1 qu'on pourra mesurer. C'est pour ça qu'on utilise le terme "pondération" qui signifie "dépendant de". La mesure n'est pas "pure" : dans les différences de T1, il y a un peu de T2 (d'autant moins qu'on prend un TE court). Puis le cycle recommence et on refait la même chose. A chaque cycle on remplit une ligne du plan de Fourier. J'ai un schéma explicatif pour ça. Si vous voulez que je vous l'envoie, écrivez moi (via le site web par exemple). Je vous enverrai ça. J'espère que cela vous aidera. Cordialement.
@@promi2043 Bonjour, je vous remercie beaucoup pour votre réponse. C'est plus clair désormais.
Merci beaucoup ! Vraiment c'es super bien expliquer !!
Merci !!
Perdon si je pose trop de question et merci beaucoup
j ai une question
les Protons de l'atome d'H2 se comportent comme un aimant et sont aleatoire ( leur somme est nulle)
apres l'application du champs B0 intense les protons prennent la direction de BO et se repartient selon deux niveaux d'energies E1 et E2 ( quel est le principe physique qui laisse les P se repartient en deux niveau d'E parallele et anti-paralleles) .
Merci
En fait, il s’agit d’un état d’équilibre thermique : à température corporelle, la tendance naturelle des spins à se placer en position parallèle sur le niveau de basse énergie est contrebalancée par des mouvements thermiques qui tendent à égaliser les deux niveaux d’énergie. La résultante est donc ce compromis donnant un léger excès de protons en position parallèle.
j ai fais un irm ya peu et au niveau des jointure j ai vie c etait pas coller genre un espace... est ce que ca peu etre nocif ? g senti des sensations bizarre au niveau des veine du crane
..
Bonjour, vous pouvez préciser : on vous a fait une IRM cérébrale, c’est ça ? Cordialement
Merci pour cet eclaircissement. Trés instructif.
Merci, c'est sympa !
@@promi2043 SVP, pourriez-vous faire une vidéo sur le fonctionnement des horloges atomiques ? Je comprends le principe de base : les vibrations des atomes de Césium 135 comme référence d'une seconde, mais je ne comprends pas comment ce principe se transforme en une horloge qui donne l'heure.
@@carlosdiniz6999 Bonjour, merci pour votre confiance ! Malheureusement, ce n'est pas du tout notre domaine. Nous sommes spécialisés en imagerie médicale, en particulier les techniques d'imagerie médicale, l'anatomie radiologique, par exemple. Cordialement.
@@promi2043 Merci d'avoir répondu. Vous expliquez le sujet d'une manière si compréhensible que j'ai pensé que vous pourriez aussi comprendre les horloges atomiques. Ce doit être une pensée magique de ma part.
@bbcourt5605
il y a 0 seconde
Monsieur, je vous remercie très sincèrement et profondément, vous avez pu accompagner ma fille sur sa prémiere année de médecine, grâce à vos vidéos elle a véritablement compris ces chapitres liés à l irm, vos vidéos sont passionantes et ce n’est pas peu dire
Encore merci du fond du cœur.
Merci, c'est sympa ! Heureux que ces vidéos puissent servir ! Cordialement.
Bonjour j'ai fais un irm 3 tesla pour une nevralgie du trijumeau sans injection car je fais pas mal d'allergies pouvez vous me dire si les images seront quand même visibles merci beaucoup pour votre réponse
Bonjour, oui je pense qu'on devrait quand même tirer quelque chose de votre IRM. Cordialement
Pourquoi lorsque T1 est très long T2 est à l'inverse très court (cas de l'os compact )? Quelle est la relation entre les 2?
Bonsoir, alors T1 et T2 sont vraiment 2 paramètres indépendants. Pour l'eau par exemple, le T1 et le T2 sont longs. Pour l'os compact, c'est très particulier car il contient très peu de protons (densité protonique faible) et habituellement, on ne le voit pas en IRM (pas de signa). On ne peut le voir qu'avec des séquences spécifiques à TE ultra courts (UTE) (on voit parfois aussi le nom de ZTE pour zéro TE...). A ma connaissance, l'os cortical a un T1 court et un T2 très court... Il n'y a pas de relation entre T1 et T2 puisque ces temps de relaxation sont liés à des phénomènes différents. Cordialement
@@promi2043 Merci pour votre réponse, cependant il y a une question qui me torture l'esprit SVP et c'est pourquoi le T1 et T2 varient d'un tissu à l'autre ? N'est-ce pas la même atome d'hydrogène dont on parle ? Quelle relation entre la nature du tissu/sa teneur en protons et la longueur des temps de relaxation?
@@rayhanebenani395 Bonjour, bonne question, qui revient régulièrement ! Alors oui, ces paramètres concernent bien l'atome d'hydrogène. Mais T1, T2 et densité protonique (DP) sont bien indépendants et différents d'un tissu à l'autre. Pour simplifier : le T1 concerne les échanges d'énergie entre le proton et les tissus environnants (la relaxation T1 est aussi appelée relaxation spin-réseau). Le T2 concerne les rapports des protons entre eux, en gros parce que les différents tissus ne s'aimantent pas de la même manière (la relaxation T2 est aussi appelée relaxation spin-spin). Enfin la DP dépend de la quantité d'eau contenue dans les tissus. Il s'agit donc de 3 paramètres qui ont des origines différentes même s'ils concernent tous les 3 le noyau d'atome d'hydrogène. Cordialement.
@@promi2043 D'accord c'est clair merci bien .
excellente vidéo, merci infiniment monsieur !
Merci !!
Merci pour la vidéo, super utile pour mon cours d'ingénierie biomédical
Merci, c'est sympa !
Merci beaucoup, vivement d'autres vidéo sur l'IRM
Merci, c'est sympa ! Il y a déjà quelques vidéos sur la chaîne. Et des projets en cours !
Bravooo à vous, vous avez très bien expliqué l'IRM
Merci, c’est très sympa ! Cordialement
Bonjour. J’ai subi 4 Irm cérébrales cette année a cause de concours de circonstance… je crains d’avoir des effets à long terme au niveau biologique à cause des champs électromagnétiques. Les médecins m’avaient dits qu’il n’y avait pas d’incidence mais j’ai pu voir que quelques études montrent un impact genotoxique… quelqu’un pourrait-il me renseigner? Merci.
@PROMI Merci, et pour mesurer le signal pondéré en T1 on doit le mesurer au début de la deuxième impulsion 90°, car au début de la première impulsion le signal est nul.
Effectivement, on mesure toujours dans le cycle suivant pour que le TR (court en T1) puisse être pris en compte. C'est bien !
vraiment c est super pour les étudiants du radiologie
Merci, c'est sympa !
Merci beaucoup pour cette vidéo ! Superbement expliqué ! 👍👍👍
Merci pour ce commentaire ! C'est encourageant pour continuer !
Je vous remercie infiniment bien expliqué et bien schématisé
Merci pour le commentaire ! C'est sympa !
Oh mon dieu je crois que j’ai enfin compris le principe !! Merci bcp
Merci ! C'est sympa !
Merci infiniment pour votre explications
Merci !!
merci ce que j ai compris: lorsqu’on met une bobine selon l'axe xy on va mesurer un signal ( courant induit)
dans ce cas le signal mesuré c'est le signal d'excitation. merci de me répondre à cette question
la deuxième partie un peu difficile ( je vais essayer de la comprendre)
Merci Beaucoup
Bonjour, effectivement, vous avez bien compris : on va bien mesurer le signal en mettant une bobine dans l'axe xOy, c'est-à-dire perpendiculairement à B0. Car on ne peut pas mesurer des différences d'aimantation dans l'axe de B0 (qui est très fort). C'est pour ça qu'on met la bobine dans l'axe xOy. Si vous avez d'autres questions, n'hésitez pas ! Cordialement.
@@promi2043 merci je vais suivre vos cours et je vous pose des questions ( merci )
une explication parfaite ❤
Merci, c'est sympa !!
Super vidéo ça donne envie d'en savoir + ! Merci à vous et à Super Magnet ! :D
Merci, c'est super sympa !!
merci; l'aimantation selon z est max mais les protons sont dephasés car les tissus sont differents ( un organe est constitué de tissu chaque tissu à un siganl different)...
est il juste ce que je suis en train d'ecrire. ? merci de me rependre
Bonsoir, oui, c'est presque ça pour les déphasages. Dans l'aimant, les spins des tissus des organes acquièrent des aimantations différentes en fonction de leurs environnements (plus ou moins aimantés). Comme si on mettait ensemble de petits aimants de forces différentes qui agissent les uns sur les autres ! Ce qui explique ces déphasages... Cordialement.
Whaouh, quelle idée géniale d'appliquer un gradient au champ magnétique !
Merci !
J'ai pas tt à fait compris à quoi ils servaient pouvez vous me rexpliquer svp (niveau term)
Excellente vidéo! Vivement la suite!
Merci pour ces encouragements !
Merci beaucoup pour votre geniale explication
Merci !!
Monsieur, je n'ai pas trouvé la deuxième video sur l'IRM. Est-ce que vous l'avez publiée?
Bonjour, merci pour votre intérêt pour nos vidéos ! Toutes nos vidéos actuelles (pour l'instant IRM et anatomie) sont disponibles sur la chaîne ruclips.net/channel/UC115O49OMUaLLffVm7iGz6g (le contraste en IRM, le signal, l'écho de spin, etc...). Pour l'instant, nous avons eu d'autres activités à faire avancer, en particulier la production de "serious games" (des jeux de plateaux) pour la révision des techniques d'imagerie avant de nous remettre à la production de vidéos. Cordialement.
@@promi2043 Merci. Je regarderai attentivement toutes les vidéos de la chaîne. Je suis un médecin retraité. J'habite au Brésil.
Peut-on déduire sans avoir à apprendre, quand le tissu sera en hypo ou hyper signal ?
En rapport avec ma réponse précédente... En fait, il faut regarder des images d'IRM de différentes régions anatomiques et voir quel est le signal des différentes structures : par exemple foie, rate, reins, muscle... car ils auront toujours des différences identiques d'une personne à l'autre, sauf variation ou pathologie : par ex surcharge en fer pour le foie... Cordialement.
merci vraiment pour cette fabuleuse video
Merci, c'est sympa !
Bonjour, merci beaucoup pour votre vidéo ! Sauriez vous m'expliquer comment ce fait il que l'impulsion RF mette tous les spin dans le même sens, ils ne sont plus en rotation avec pour moment angulaire w0 ?
Merci d'avance 😁
Bonjour merci pour votre commentaire ! Vous voulez savoir pourquoi les spins se mettent en phase après une impulsion RF de 90°, c'est bien ça ? C'est une très bonne question pour laquelle la réponse est assez complexe à exprimer... On n'en parle jamais d'emblée dans les cours pour ne pas rendre la chose encore plus difficile ! Je peux vous donner des détails avec des schémas si nous échangeons par mail.. Est-ce que cela vous irait ? Cordialement.
@Lisa BARBARA OK ! Transmettez-moi un mail pour que je puisse vous envoyer ça. Le mien : association.promi@gmail.com
Svp ,le prof de radiologie a posé dans l'examen le QCM suivant :les contres-indications de l'IRM sont:claustrophobie ,agitation ,est ce que je dois les cocher ou non ?parce qu'elle n'a pas désigné est ce que les CI absolues ou relatives.
Bonsoir, claustrophobie et agitation sont clairement des contre indications relatives ! La claustrophobie n’empêche pas forcément de faire une IRM. Cela dépend du niveau de claustrophobie, de la prise en charge…On peut éventuellement avoir recours à l’hypnose conversationnelle. L’agitation amène parfois à écourter un examen. Mais n’empêche pas forcément de le faire… Même pour des patients qui ont des mouvements involontaires (Parkinson par exemple, ou retard psychomoteur, etc…) on peut proposer un examen sous AG. Bref, pour moi ce ne sont pas des contre indications. Mais je ne sais pas ce que votre prof voulait vous faire dire… Cordialement.
Merci infiniment pour votre efforts 🙏
Merci !!
Top vous sauvez mes partiels
Merci pour ce commentaire ! C'est sympa !
que signifie "pondéré "...je débute en irm et les choses se compliquent de plus en plus...
Bonjour Charles, pas de problème ! Pondéré veut dire "dépendant ou fortement dépendant de"... En fait, les contrastes en T1, T2 ou en densité protonique ne sont jamais "purs". Par exemple, pour mesurer un contraste en T1, il faut mesurer le plus vite possible (avec un TE court) pour que le T2 intervienne le moins possible (mais il intervient quand même un peu). Vous pouvez peut-être regarder la vidéo qui parle du contraste...
Vous parlez de temps de repousse, est-ce que c’est la même chose que le temps de relaxation ?
Bonsoir, non, en fait, c'est une façon de parler du Temps de Répétition TR (TR ça fait aussi Temps de Repousse !). C'est le temps qu'on laisse aux tissus pour repousser plus ou moins (en fonction de leurs temps de relaxations respectifs, cad leurs T1). Pour obtenir un contraste en T1, par exemple, il faut que le temps de répétition (donc temps de repousse qu'on laisse aux tissus) soit court pour qu'on puisse différencier celui qui repousse vite (T1 court) de celui qui repousse plus lentement (T1 long). J'espère que ça va vous aider... Cordialement
Merciiiii beaucoup pour cette vidéo Ça me sauve la viee❤😂
Merci !!
Banger vidéo, on réussit polytech ez avec ça.
Merci !!
Merci beaucoup pour ces excellentes explications effet j'ai besoin une formation en IRM
Merci, c'est sympa !
Merci pour les explications.
Merci !!
Bonsoir PROMI, y'a t-il un moyen ou une astuce pour pouvoir connaître la longueur plus ou moins le T1/T2 selon le tissu donné ?? (À part la mémorisation par cœur)
Alors pas simple vraiment ! Car la structure des tissus biologiques est complexe (et pas forcément homogène) et les valeurs de T1 ou de T2 mesurés dépendent de l'appareil, des séquences utilisées, des personnes... Bref, il y a une forte approximation dans les valeurs qu'on trouve dans les tableaux, en fonction des auteurs... Ce qui est certain, c'est que les structures contenant de l'eau "libre" (LCR, urine...) possèdent des T1 et T2 longs. Les tissus contenant de grosses molécules ont des T1 plus courts... Et que les valeurs de T2 sont, en moyenne, 10 fois plus courtes que celles de T1. Plutôt que des valeurs, il faut juste savoir un ordre de grandeur et essayer de retenir des différences : par exemple, le T1 de la SB plus court que celui de la SG... Et voir région par région anatomique de cette manière. Il n'y a pas beaucoup de tissus différents visibles en fait... Cordialement
@@promi2043 bonjour docteur je vous demande de me faire une consultation de IRM sur angiome hépatique géant
@@promi2043 Merci vous êtes super vraiment ! Vous faites un très bon prof de radiologie
@@rayhaneben3599 Merci ! C'est sympa !
bonjour , je suis en prepa scientifique , et je veux faire une petite experience (tpe) pour modeliser l'IRM ,
est ce que tu peux m'aider par un petit montage elecrique qui modelise l'IRM.
Merci beucoup .
Salut, alors pas évident de modéliser l'IRM sans aimant ! A faire simplement, je ne vois que l'induction électromagnétique qui simule la réception du signal... Mais ce n'est pas une particularité de l'IRM... Tout ce que nous faisons comme démos sur la RMN se fait quand même autour d'un aimant (0,1T)...
Bonjour Olivier, c'est bien expliqué mais il fallait nous expliquer aussi les deux temps de. Relaxation, le t1 et T2...
Merci
Bonjour, difficile de tout mettre dans la même vidéo… Mais le T1 et le T2 sont expliqués dans la vidéo « le contraste des images en IRM » sur notre chaîne. Vous me direz ce que vous en pensez. Cordialement
étant encore au lycée, je suppose qu'il est normal que je ne comprenne pas tout...Même si l'explication est très claire ! Je ne comprends pas de quelle manière l'impulsion RF rephase les protons déphasés
Ah oui ! Excellente question ! C'est un sujet qu'on aborde très, très loin dans les cours, car ce n'est pas évident... Parfois, ce n'est pas abordé du tout (on considère que c'est un fait...). Pour simplifier, il faut oublier un instant l'aspect quantique du phénomène. Et imaginer que l'équilibre "thermodynamique" qui est à l'origine du surplus de protons en position parallèle conduit à des vecteurs (individualisés) qui "regardent" globalement en direction de Mz (verticalement). Donc parallèlement les uns par rapport aux autres. Lors de l'impulsion RF de 90°, cet "ensemble" de vecteurs est "basculé" dans le plan horizontal et ils sont donc "parallèlement" dans le plan horizontal, donc en phase. Je disais que c'était compliqué ! J'ai des schémas qui explicitent ça....
On peut aussi expliquer ça mathématiquement avec les équations de Bloch (un des découvreurs de la RMN en 1946), mais cela dépasse de loin mes compétences !
Bravo de vous intéresser à l'IRM qui est un sujet passionnant.
Cordialement.
Magnifique merci beaucoup
Merci, c'est sympa !
Comment peut-on augmenter la sensibilité en IRM ?
A : Travailler à un champ magnétique plus élevé
B : Augmenter l'intensité des gradients de champ magnétique
C : Utiliser une antenne IRM corps entier avec un diamètre largement supérieur à la taille
du sujet
D : Utiliser une antenne IRM corps entier adaptée à la taille du sujet
E : Utiliser une antenne de surface
la réponse SVP
Bonsoir, très bonne question ! Il y a pas mal de pistes parmi vos propositions !
Augmenter le champ statique effectivement. Mais lorsqu'on augmente le champ, les contraintes augmentent aussi : dimensions et poids de l'appareil par exemple. La puissance des gradients aussi, ce qui les rend plus bruyants... Bref, possible jusqu'à un certain point !
Pour les antennes : toujours utiliser des antennes de réception locales, adaptées à la région explorée : plus l'antenne est adaptée, meilleur sera le coefficient de remplissage (et donc le signal). Ensuite, on utilise des antennes en réseau phasé : beaucoup d'antennes de surface (une de vos solutions) de petit diamètre (ce qui augmente le rapport S/B, mais sur un petit volume, pour couvrir une zone plus grande. Par exemple, une antenne genou comprend souvent 16 éléments (donc 16 petites antennes de surface). En général, l'antenne corps ne fait que émettre les impulsions RF. Elle ne réceptionne pas le signal. Autre piste dont on parlait un moment donné : refroidir les antennes, ce qui pourrait augmenter aussi le rapport S/B. Mais c'est compliqué à faire !
Dernière piste que je vois pour l'instant : augmenter la sensibilité avec des produits de contraste. Il y a déjà des produits de contraste mais on pourrait peut-être aller plus loin avec l'hyperpolarisation. Voir cet article : www.inc.cnrs.fr/fr/cnrsinfo/une-imagerie-par-resonance-magnetique-10000-fois-plus-sensible
Cordialement.
Vous êtes TOP !
Merci !! C'est sympa ! Cordialement.
Bravo très bien expliquer, Merci
Merci !
Merci beaucoup je comprends mieux le cours
Merci pour ce commentaire ! Cela fait plaisir ! Cordialement.
Merci je vais resumer et memoriser votre explication:
please encore des videos
J’y travaille !
merci infiniment parfaitement bien résumé et j'ai mieux compris certaines choses
Merci, c'est sympa !
Bonjour
J'ai un peu de mal a comprendre le champ de vision fov
Bonjour, ah OK, je vois. Le champ de vue (ou FOV = field of view en anglais) correspond aux dimensions (en cm) de vos coupes. C'est-à-dire les dimensions de la zone que vous explorez. Par exemple un champ de vue de 25 x 25 cm (plutôt pour la tête) et 40 x 40 cm par exemple pour l'abdomen ou le thorax... Le champ de vue peut aussi être rectangulaire : par exemple 40 x 30 cm. Ensuite, si on rapporte les dimensions du champ de vue à la matrice, ça donne les dimensions des pixels de la coupe. Par exemple un champ de vue de 25 x 25 cm et une matrice de 256 x 256 : en divisant de champ de vue (25 cm ou 250 mm) par la matrice (256) on obtient un pixel de 250 mm / 256 = 0,98 mm soit environ un pixel de 1mm de côté. On prépare une vidéo sur pixels, voxels, etc... Cordialement.
@@promi2043 merçi
Merci 1000 fois!
Merci !!
Par rapport à votre question concernant l'écho de spin : il faut bien différencier ce qui concerne Mz (donc les niveaux d'énergie) de Mxy (les déphasages). Il faut les considérer comme 2 phénomènes différents (même s'ils se déroulent en même temps). Pour la conséquence de l'impulsion de 180° sur le plan transversal, la meilleure représentation est la "bascule" du plan de 180°, donc l'image "en miroir" comme je le disais dans la vidéo. Si vous voulez encore des précisions, vous pouvez me contacter sur mon mail en passant par le site web de PROMI (promi-imagerie.org/Contact/). J'essayerai de vous aider. Cordialement.
Merci beaucoup 😍😍😍
Avec plaisir 😊
Mille fois Merci
Merci, c'est sympa !
MERCI ❤
Merci, c'est sympa !
merci énormément❤ 🇩🇿❤️
Merci !!
Merci beaucoup pour cette vidéo ! Vous êtes parvenus à me faire comprendre en 15 minutes que que mon professeur a essayé de m'expliquer pendant 2H ! Vous sauvez probablement ma session de janvier :)
La seule question subsistant après cela est la valeur de gamma dans l'équation de la fréquence de Larmor. Je suis kinésithérapeute et malheureusement pas un poil physicienne. Je suppose que sa valeur coule de source vu qu'à partir de B0 il est possible de connaitre la valeur de f. Mais qu'est-ce que représente gamma ?
Merci, cela me fais plaisir !! Bonne continuation !
Le rapport gyromagnetique du proton
@@omarsliman7387 Bonjour, c'est un sujet qui vous pose problème ? Cordialement.
j'ai besoin un résumé de les nlyses de irm icri on français s'il vous plais
Bonjour, il me faudrait une adresse mail...
mercii bcqq j'ai bien compris !!
Merci !!
merci
bcp
Merci pour vos encouragements ! Cordialement.
Les vidéos de l'irm e' langue française n'existe pas du tout et ce qui sont sur le web ne sont pas satisfaisant
You're the best
perfection !
Merci !!!
super! please je profite de votre gratitude scientifique et je vous demande les cours en pdf
D'avance, Merci beaucoup!
Bonjour, je peux vous fournir les schémas de la vidéo en pdf. Merci de me fournir une adresse mail pour l'envoi. Cordialement
Quand 15 minutes sur RUclips fait plus de sens que 6 mois de formations académiques 😭😭😭
Merci pour ce soutien !! C’est sympa !
Je t’aime
Merci !!
alors la tip top !!
Merci !!
merciiiii
Merci, c'est sympa !