Come Trovare Massimi e Minimi di una Funzione (con Esercizi Svolti)

Поделиться
HTML-код
  • Опубликовано: 16 дек 2024

Комментарии • 21

  • @lorenzofranchi4588
    @lorenzofranchi4588 10 месяцев назад +1

    wow, è il video più chiaro che io abbia mai visto sull'argomento, spiegazione degli esempi chiarissima, hai toccato veramente tutti i punti, complimenti

    • @LuigiManca
      @LuigiManca  10 месяцев назад

      Grazie mille Lorenzo 😄

  • @giovannamariagraziabusa7884
    @giovannamariagraziabusa7884 2 года назад +8

    Bravissimo...sei stato chiarissimo finalmente qualcuno che spiega in maniera brillante il metodo per calcolare minimi e massimi

    • @LuigiManca
      @LuigiManca  2 года назад

      Bellissimo commento, grazie mille 😀

  • @goodtimes963
    @goodtimes963 3 месяца назад

    buone spiegazione , mi sono iscritto continua così :)

  • @Sara-hp4xf
    @Sara-hp4xf 3 года назад +3

    grazie mille! video fantastico!

    • @LuigiManca
      @LuigiManca  3 года назад +1

      Grazie Sara, mi fa piacere leggere questo commento 😃

  • @doppelrisky2267
    @doppelrisky2267 Год назад +1

    Complimenti, spiegazione molto chiara .

  • @fernandobarrientos8326
    @fernandobarrientos8326 2 месяца назад

    bellissimo

    • @LuigiManca
      @LuigiManca  2 месяца назад

      @@fernandobarrientos8326 grazie 😃

  • @simonettabovalina1834
    @simonettabovalina1834 2 года назад +2

    Complimenti bravissimo

  • @alessiofalzetta870
    @alessiofalzetta870 Год назад +2

    non riesco a capire come mai nell'ultimo studio di funzione ottieni quei valori, come lo tratti lo 0? potresti spiegarmi nel dettaglio come hai trovato i segni, perché se faccio x>=0 e x

    • @LuigiManca
      @LuigiManca  Год назад

      Ciao Alessio, nell'ultimo esempio, la funzione con valore assoluto, quando studio il segno della derivata prima riporto sul grafico il risultato delle due disequazioni, x ≥ -3/2 e x < 3/2, e poi di ognuna considero l'intervallo che corrisponde alla definizione di valore assoluto (per la prima x < 0 e per la seconda x ≥ 0) e sono le parti evidenziate in blu nel video. Il segno finale della derivata, da cui si ricavano poi gli intervalli di crescenza e decrescenza, lo si ottiene combinando questi risultati, cioè prendendo le soluzioni del primo sistema fino a 0 escluso e poi quelle del secondo da 0 in poi.

  • @Kekkoo_
    @Kekkoo_ 3 года назад +1

    ma (x-1)^2 >0 non è per x diverso da 1? perche se al posto di x avessi 1, avrei 0^2 che fa 0 e che non è maggiore di 0 ma uguale. minuto 9:30 circa

    • @LuigiManca
      @LuigiManca  3 года назад +1

      Ciao Francy, sì, per x = 1 l'espressione diventa uguale a 0. Quello che s'intende nel video è che sia sempre maggiore di 0 nel dominio della funzione nel quale x = 1 non è compreso. Infatti ho cercato di renderlo più chiaro dicendo "ricordando che dovremo escludere l'1 dalla seconda".

  • @gianlupapicchi7955
    @gianlupapicchi7955 11 месяцев назад +1

    prossima volta scrivi direttamente il risultato almeno si capisce meglio

    • @LuigiManca
      @LuigiManca  11 месяцев назад

      Ciao, che cosa intendi di preciso?

    • @niki9676
      @niki9676 10 месяцев назад

      Il tuo commento ma in versione educata: "La prossima volta *potresti* scrivere direttamente il risultato *per favore* ? *Secondo me* sarebbe più comprensibile"