Evaluating a series of factorials

Поделиться
HTML-код
  • Опубликовано: 26 дек 2024

Комментарии • 41

  • @emmanuelonah4596
    @emmanuelonah4596 6 месяцев назад +2

    It's beautiful to see how the telescoping series saved the day. Thank you, you are an amazing teacher

  • @Crk-ot6um
    @Crk-ot6um 6 месяцев назад +11

    What a coincidence! I too used the telescopic series and the idea of general term to solve this. At last I also got 1/2! - 1/2024!, this seemed not good to me as I felt it may be a vague answer but anyway, I continued with your video. I'm happy at last that I got one of the answers to be right after solving many of the questions from your thumbnail and video!

  • @surendranathkharat4225
    @surendranathkharat4225 23 дня назад

    You are a Great Teacher

  • @djez8
    @djez8 6 месяцев назад +3

    Thank you from Hong-Kong (but I am french...)! Your explanations are always clear and accuratr, I enjoy every time!

  • @komalshah1535
    @komalshah1535 7 месяцев назад +3

    Telescoping series. Very interesting. Thanks.

  • @dougaugustine4075
    @dougaugustine4075 7 месяцев назад +5

    I'm going to have to watch this again. Summations with the signa notation were always a puzzle for me as was probability with permutations and combinations.

  • @Coder-ff8iw
    @Coder-ff8iw 6 месяцев назад

    Excellent sir❤ . I appreciate your approach. Your teaching method is so easy that we can understand very easily

  • @Vabadrish
    @Vabadrish 6 месяцев назад

    Wow got it in first try !! Thank you sir for such beautiful questions ....love your videos ❤

  • @dirklutz2818
    @dirklutz2818 6 месяцев назад

    Great idea!

  • @SanePerson1
    @SanePerson1 4 месяца назад +2

    An interesting aside: the general term of the related INFINITE series looks very similar to the general term for the Maclaurin series for e¹ - the difference is the "k+2" in the denominator. A way to get that in the denominator is to multiply the series for e^x by x: x + x²/1! + x³/2! + x⁴/3! + ... Integrate that term by term one gets the series you have here with x = 1 and an extra term in front of 1/2 that comes one term in front of x²/2. To sum the series then you can integrate xe^x from 0 to 1 and subtract 1/2; the series sum is 1 so you get 1/2 for the sum of the infinite series - as it should since the limit of the tiny correction is 0 when you let 2024 → ∞.

  • @alexandrecuchi2400
    @alexandrecuchi2400 6 месяцев назад +1

    Never see telecoping series. But I would whatch a video about them. Greate work

  • @surendrakverma555
    @surendrakverma555 6 месяцев назад

    Good 👍

  • @violet_broregarde
    @violet_broregarde 4 месяца назад

    Thank you for this problem, it was very fun to solve :D

  • @AzmiTabish
    @AzmiTabish 6 месяцев назад +1

    Awesome. Thanks.

  • @nothingbutmathproofs7150
    @nothingbutmathproofs7150 5 месяцев назад

    Beautiful!

  • @epikherolol8189
    @epikherolol8189 6 месяцев назад +4

    12:40 That's scary😈

  • @77Chester77
    @77Chester77 6 месяцев назад +1

    Got a new hat? Looks great 😀

    • @PrimeNewtons
      @PrimeNewtons  6 месяцев назад

      Not new. Just not frequently worn compared to others .

    • @Jon60987
      @Jon60987 6 месяцев назад

      @@PrimeNewtons You missed the chance to showcase your hat by posing so that the summation sign that you put in the forefront of the screen would be perfectly aligned on the top part of your hat. I also like that hat, and it is good enough to get a brief 5 seconds when it is the star of the show :)

    • @PrimeNewtons
      @PrimeNewtons  6 месяцев назад

      @@Jon60987 🤣🤣🤣🤣🤣

  • @Harrykesh630
    @Harrykesh630 7 месяцев назад +2

    Telescopic series ✨

  • @study_math
    @study_math 6 месяцев назад

    面白い~😄

  • @panjak323
    @panjak323 2 месяца назад

    Didn't know what I was looking at... Written it as sum 1/((n+2)n!) and guessed 1/2 from first 4 terms, which is hella close, considering I don't do maths very often

  • @ayushsingh3174
    @ayushsingh3174 7 месяцев назад +1

    Nice problem

  • @Thampuran-o9o
    @Thampuran-o9o 21 день назад

    👍👍👍👍

  • @griffinf8469
    @griffinf8469 6 месяцев назад

    I’m confused about the 5:47 to 6:20 minute mark. How do you go from (k+1)! to (k+1)k! and how do you go from (k+2)! to (k+2)(k+1)k!? Can someone explain the steps in doing that?

    • @griffinf8469
      @griffinf8469 6 месяцев назад +1

      Nevermind, I figured it out.

  • @Necrozene
    @Necrozene 6 месяцев назад

    Oh! I get it now! Yay! Go Prime Newtons!

  • @Necrozene
    @Necrozene 6 месяцев назад

    I am currently struggling to figure out why P.N. did not do the formula from 1 and then subtract of the easy bits at the start...

  • @quigonkenny
    @quigonkenny 6 месяцев назад

    "...a very small number..."
    Yep. Unless you're looking for an answer with over 5800 significant digits, the answer is 0.5...

  • @artandata
    @artandata 3 месяца назад

    answer is: 1/2 - 1,5479244899×10⁻⁵⁸¹⁵ just a little very little bit less than 0.5 😄

  • @mrbenwong86
    @mrbenwong86 2 месяца назад

    What sort of people dream up these questions at the first place.

  • @0llie
    @0llie 6 месяцев назад

    next video: calculate 2024! manually 😂

  • @mab9316
    @mab9316 4 месяца назад

    This series converges to 1/2.

  • @carlosfox8201
    @carlosfox8201 6 месяцев назад

    Double beauty

  • @ivanhuertas5307
    @ivanhuertas5307 7 месяцев назад

    Thanks brother you are just amazing!! ..one question speaking about "series" on the "Soul-Series" what are your believes..do you believe in the Lord JesusChrist?

  • @Necrozene
    @Necrozene 6 месяцев назад

    Simple. Just whip out your calculator. lol NO! I want to see how Prime Newtons does it.

  • @lucasborges6447
    @lucasborges6447 6 месяцев назад +1

    Esplendido.