Can you find area of the Purple shaded region? | (Semicircles) |

Поделиться
HTML-код
  • Опубликовано: 16 ноя 2024

Комментарии • 46

  • @Alishbafamilyvlogs-bm4ip
    @Alishbafamilyvlogs-bm4ip Месяц назад +1

    Wow very beautiful sharing thank you so much for sharing Sir ❤

    • @PreMath
      @PreMath  Месяц назад

      Glad to hear that!
      You are very welcome!
      Thanks for the feedback ❤️

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 Месяц назад

    Very nice and enjoyable
    Excellent Sir
    You are very good explain
    Thanks PreMath
    ❤❤❤❤❤

  • @jamestalbott4499
    @jamestalbott4499 Месяц назад +1

    Thank you!

    • @PreMath
      @PreMath  Месяц назад

      You are very welcome!
      Thanks for the feedback ❤️

  • @marioalb9726
    @marioalb9726 Месяц назад +1

    White semicircle:
    A₁ = 23π = ½πr² = ⅛π(2r)² = ⅛πc²
    Chord "c' squared :
    c² = 23*8 = 184 cm²
    Flip white semicircle, and Purple shaded area becomes a half circular ring:
    A = ½(¼πc²) =⅛.π.184
    A = 23π cm² ( Solved √ )

  • @WOLF-dq4hg
    @WOLF-dq4hg Месяц назад

    How do you know the idea of the problem or how do you analyze the problem to solve it?

  • @santiagoarosam430
    @santiagoarosam430 Месяц назад +1

    Tomando como centro el punto medio de OP, giramos 180º el semicírculo interior y la figura se transforma en dos semicírculos concéntricos que delimitan media corona circular, cuya superficie es igual al área sombreada → El área de una corona circular es el producto (π*c²), siendo "c" la semicuerda tangente al círculo interior → En este caso, c=r=PD→ 23π cm² es el área de la zona sombreada
    Gracias y un saludo.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      You are very welcome!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 Месяц назад +1

    There's NO NEED OF ANY CALCULATIONS !!!
    We already know that area of white semicircle is:
    A = ½πr² = ⅛πd² , where "d" is diameter of white semicircle, and also is a chord "c" of purple semicircle.
    A = ⅛ π c² = ½ (¼πc²)
    Also we already know the formula of a circular ring area, respect to the chord.
    A = ¼πc²
    Half circular ring is:
    A = ½ (¼πc²)
    Exactly the same formula, same area.
    Purple shaded area is equal to white semicircle area.
    A = 23π cm² (Solved without any calculations )
    We only need to flip the white semicircle, so that, purple shaded area becomes a half circular ring.

  • @himo3485
    @himo3485 Месяц назад +1

    CP=PD=PO=r
    r*r*π/2=23π r=√46
    AO=OB=R
    √46*√46=(R-√46)(R+√46)
    46=R^2-46 R^2=92
    Purple Shaded Region :
    R^2π/2 - 23π = 46π - 23π = 23π(cm^2)

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 Месяц назад +2

    Area of the small semicircle= 23π
    1/2πr^2=23π
    r^2=46
    So r=√46
    Draw big circle
    Let R is the Radius of the big circle
    (√46)(√46)=(R+√46)(R-√46
    R^2-46=46
    R^2=92
    So Area of the Purple shaded area=1/2(π)(R^2)-1/2(π}(r^2)=π/2(92-46)=23π cm^2.❤❤❤

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 Месяц назад +1

    A₁ = ½πr² = 23π --> r=√46 cm
    R= r√2 = 2√23 cm
    A = A₂ - A₁ = ½πR² - 23π
    A = 46π - 23π
    A = 23π cm² ( Solved √ )

  • @Birol731
    @Birol731 Месяц назад +1

    My way of solution ▶
    the small semicircle has the radius r
    [OP]= [PC] = r
    A= 23π cm²
    23π= πr²/2
    r²= 46
    b) by considering the right triangle ΔOPC, we have:
    [OP]= r
    [PC]= r
    [CO]= R

    by applying the Pythagorean theorem for the right triangle ΔOPC we get:
    R²= r²+r²
    R²= 2r²
    R²= 2*46
    R²= 92
    c) Apurple= πR²/2 - πr²/2
    Apurple= (π/2)*(R²-r²)
    Apurple= (π/2)*(92-46)
    Apurple= 23π cm²

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 Месяц назад +3

    This is an example of easier than it looks. Area is 23pi units square. I alao want to comment further that it the perpendicular bisector theorem were not applicable, we would not have symmetric semicircles with regard to difference in area. I could be wrong. I hope that this is a more than sufficient takeaway.

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for the feedback ❤️

    • @stanbest3743
      @stanbest3743 Месяц назад

      I took me a few minutes, but you can usually find a helpful right angle triangle in these problems😊

  • @quigonkenny
    @quigonkenny Месяц назад +1

    Let r be the radius of semicircle P and R the radius of semicircle O. The area of semicircle P will be πr²/2 and the area of semicircle O will be πR²/2, so their difference, the purple area, will be as follows:
    Aᴘ = πR²/2 - πr²/2
    Aᴘ = (R²-r²)π/2 --- [*]
    Triangle ∆DOP:
    OP² + DP² = OD²
    r² + r² = R²
    R² = 2r²
    R = √(2r²) = √2r
    Aᴘ = (R²-r²)π/2 --- [*]
    Aᴘ = (2r²-r²)π/2
    Aᴘ = πr²/2
    Thus the purple shaded area is the same as the area of semicircle P, which is given as 23π cm².

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @marcgriselhubert3915
    @marcgriselhubert3915 Месяц назад +1

    Very easy. More generally, if the area of the little semi circle is A, then the area of the purple region is also A.

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @MrPaulc222
    @MrPaulc222 Месяц назад

    I got R=sqrt(92) pretty quickly as it is sqrt(46) * sqrt(2).(length OC being the diagonal of an imagined square).
    46 pi - 23pi

  • @giuseppemalaguti435
    @giuseppemalaguti435 Месяц назад +1

    r=√(46π/π)=√46...R=√2r=√92=2√23...Aviolet=πR^2/2-π23=π46-π23=π23

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 Месяц назад

    ...I justified my answer! It's reasonable enough I guess since we're dealing with non- terminating non-repeating decimals. Which is irrational. It seems to have a negative connotation but in this case not so much. 🙂

    • @PreMath
      @PreMath  Месяц назад +1

      😀
      Thanks for the feedback ❤️

  • @-wx-78-
    @-wx-78- Месяц назад

    R = CO = CP·√2 = r√2 from isosceles right △COD, then the big semicircle area is twice the small semicircle area, and their difference equals to the small semicircle area.

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @denisrenaldo3506
    @denisrenaldo3506 Месяц назад

    When you obtain that R^2=2r^2 there is no need to compute any length using radical. You simply deduct that the area of the large circle (pi*R^2) is the double of the area of the small one (pi*r^2) and it's the same for the semicircle areas. So, the area of the purple region which is the difference of those two, is equal to the small semicircle area which is 23 pi cm^3. That's it !

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @alexniklas8777
    @alexniklas8777 Месяц назад

    r=√(46); R= √(r^2+r^2)= √(46+46)=√92=2√23.
    S=πR^2/2= π(2√23)^2/2=46π

    • @PreMath
      @PreMath  Месяц назад +1

      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 Месяц назад

    Thanks but easy

  • @AmirgabYT2185
    @AmirgabYT2185 Месяц назад +2

    S=23π≈72,29 cm²

    • @PreMath
      @PreMath  Месяц назад

      Excellent!
      Thanks for sharing ❤️

  • @r.markclayton4821
    @r.markclayton4821 Месяц назад

    Premath has oversimplified the problem. The unshaved section does not need to be a semicircle. It could be a full circle as well, possibly other segments as well. Same answer 23pi.

  • @yakovspivak962
    @yakovspivak962 Месяц назад

    S = 23 pi

  • @misterenter-iz7rz
    @misterenter-iz7rz Месяц назад

    Simply mental mputation gives 23pi.

    • @PreMath
      @PreMath  Месяц назад +1

      Thanks for the feedback ❤️

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l Месяц назад

    Very nice sharing sir❤❤

    • @PreMath
      @PreMath  Месяц назад

      Thanks for the feedback ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho Месяц назад +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) OP = CP = CD = r
    02) (23 * Pi) = (Pi * r^2) / 2 ; 46 * Pi = Pi * r^2
    03) 46 = r^2 ; r = sqrt(46) ; r ~ 6,8 cm
    04) OA = OC = OD = OB = R
    05) OD^2 = OP^2 + PD^2
    06) R^2 = 46 + 46
    07) R^2 = 92 ; R = sqrt(92) ; R ~ 9,6 cm
    08) Area of Big Semicircle = (92 * Pi) / 2 = 46 * Pi
    09) Purple Shade Region Area = (46 * Pi) - (23 * Pi)
    10) Purple Shade Region Area = 23PI sq cm
    Therefore,
    OUR BEST ANSWER :
    The Area of Purple Shaded Region is 23Pi Square Centimeters.

    • @PreMath
      @PreMath  Месяц назад +1

      Excellent!
      Thanks for sharing ❤️