Naive Bayes Classifier in Python (from scratch!)

Поделиться
HTML-код
  • Опубликовано: 10 дек 2024

Комментарии • 47

  • @sayantansadhu6380
    @sayantansadhu6380 3 года назад +17

    The from scratch series in this channel is the best !!

  • @amitkumarghosh
    @amitkumarghosh 10 месяцев назад

    I can't believe this man is doing this for free, thank you brother

  • @HaiderAli-hp6tl
    @HaiderAli-hp6tl 2 года назад +2

    the number of subscribers to your channel does not do justice to your content. This is such quality educational content. Keep it up, man.

  • @secondarypemail7181
    @secondarypemail7181 2 года назад +4

    Thanks man,your effort to make algorithms from scratch is just on another level.Your effort is much appreciated👍

  • @lucascojot7226
    @lucascojot7226 3 года назад +3

    Super high quality videos! I'm surprised you have 8K and not 800K... Keep it up!

  • @pietrogarofalo2957
    @pietrogarofalo2957 2 года назад

    Man, u save my life ty very much.
    Use sklearn is too easy, justify why u decide to use Naive and why u can use it is the very important thing, keep it up man .
    ( excuse me for my bad english )

  • @caljohn1475
    @caljohn1475 2 года назад

    You're a legend my dude, thanks so much for explaining this

  • @cheatforlife
    @cheatforlife 2 года назад

    Thank you for opening up new horizons for me

  • @tarabalam9962
    @tarabalam9962 Год назад

    this gave a lot of clarity , thanks

  • @kushagrakumar9576
    @kushagrakumar9576 3 года назад +1

    Excellent video. Keep up the good work 🙂

  • @glennbroyne7316
    @glennbroyne7316 3 года назад

    Fantastic video, very well explained!

  • @AbhishekS-cv3cr
    @AbhishekS-cv3cr 7 месяцев назад

    You can also ignore mean_radius feature, since it has some correlation with other features

  • @caljohn1475
    @caljohn1475 2 года назад +1

    @normalized Nerd How do you make a prediction with this using specific values?

  • @teetanrobotics5363
    @teetanrobotics5363 3 года назад +1

    SVMs,Random Forest and gradient boosting left in the playlist

  • @tudorjeverdan
    @tudorjeverdan Год назад +1

    I was importing a mysql dataframe, I was importing string elements and it resolved them into objects,
    data = pd.read_sql_table("ai_learning", engine)
    columns_to_convert = ["Products", "feedback", "blog", "diagnosis"]
    data[columns_to_convert] = data[columns_to_convert].apply(pd.to_numeric, errors='coerce')
    data = data[["Products", "feedback", "blog", "diagnosis"]]
    This is how I fixed it if anybody was getting the same outputs.

  • @daskoujr2670
    @daskoujr2670 Месяц назад

    Very nice! , I think the only thing missing is smoothing in case you encounter a wild case?!

  • @jorgetaboada6500
    @jorgetaboada6500 3 года назад

    Sorry, again I do understand now, and also I apply in my work with excellent results, Thanks!

  • @LucasPiorino
    @LucasPiorino 6 месяцев назад +1

    What 36 and 74 means at 13:49?

  • @dimamedvedev4124
    @dimamedvedev4124 7 месяцев назад

    Great lesson. But still don't understand how we get array with posterior given certain set of features befor using np.argmax?

  • @Mustistics
    @Mustistics 2 года назад +1

    Damn, I was hoping for a SKlearn tutorial!

  • @averyiorio4337
    @averyiorio4337 3 года назад

    amazing content and fantastic explanations

  • @yashicasaun
    @yashicasaun Год назад +1

    When you are checking for gaussian curve, shouldn't you have filtered for different diagnosis and then check if the curve fits?
    Because now, we see the data fits gaussian. But we then change the data and only take a subset and then fitting the curve
    Thanks for the great video.

  • @shortyTalks
    @shortyTalks 2 года назад

    😃Bro thx for the nice explanation. Are you using a theme for vs code, cuz all the colours in your systems are looking damn good

  • @vishwajeetdeulkar3862
    @vishwajeetdeulkar3862 3 года назад

    Hi, I am getting error as "index 29 is out of bounds for axis 0 with size 29" for this statement likelihood[j] *= cal_gaussianLikelihood(df,features[i],x[i],Y,labels[j]), any solution?

  • @sukhmanpreetsinghsandhub2042
    @sukhmanpreetsinghsandhub2042 2 года назад

    Awesome video.

  • @alexchristian220
    @alexchristian220 3 года назад +2

    likelihood = [1] * len(labels), post_prob = [1] * len(labels)
    what this above code actually do?
    And also how can I work this code on tennis.csv dataset?

    • @alexchristian220
      @alexchristian220 3 года назад

      bhai iska explanation bta do.

    • @NormalizedNerd
      @NormalizedNerd  3 года назад

      That's just a python shortcut.
      arr = [1] * n
      this will assign a list of n 1's to the variable 'arr'. I used this to initialize the likelihood and posterior probability lists.
      The tennis dataset contains only categorical variables so just relabel them to 0,1,2, etc. and apply approach 2 given the video.

    • @alexchristian220
      @alexchristian220 3 года назад

      @@NormalizedNerd bhai can you tell me what is the name of the python shortcut? and how likelihood = [1] * len(labels), replaced with likelihood[b].?

  • @muhammadirsyaduddin6597
    @muhammadirsyaduddin6597 2 года назад

    Hello! Is it possible to add the multinomial in the code? Thank you.

  • @hajraali1205
    @hajraali1205 2 года назад

    I did not understand the output, we were detecting the cancer patient, but in out put there are two matrix and accuracy data so which is which.

  • @Techup1000
    @Techup1000 3 года назад +1

    Nice video

  • @minasahebi1474
    @minasahebi1474 2 года назад

    perfect!

  • @jorgetaboada6500
    @jorgetaboada6500 3 года назад +1

    Sorry, but I do not understand who is "df" when you def a function because you have never defined. I will appreciate your explanation

    • @Joemama-jh5go
      @Joemama-jh5go 2 года назад +1

      DataFrame, just means the data

  • @UdayKumar-yv7ej
    @UdayKumar-yv7ej 9 месяцев назад

    Bro for this code how to convert string to float bro

  • @placement10lpa36
    @placement10lpa36 2 года назад

    can someone explain me the guassian distribution part