Teorema SPETTRALE , endomorfismi autoaggiunti , esercizio svolto

Поделиться
HTML-код
  • Опубликовано: 21 дек 2024

Комментарии • 36

  • @MD-np2xn
    @MD-np2xn 2 года назад +9

    Professore la ringrazio di cuore. Sono video che danno l'impressione della lunghezza ma in realtà lei spiega le cose con una tale semplicità e condensa con più di un esempio per permettere a chi sta guardando di elaborare quanto detto e orientarsi meglio, e mi creda in quanto sono anni che apprendo e ripasso anche grazie a youtube e non ho mai visto lezioni come le sue. Continui così, sarà d'aiuto a tantissimi studenti

  • @rainren8486
    @rainren8486 2 года назад +15

    Grazie per i video , mi hanno aiutato molto , ho studiato algebra lineare praticamente solo seguendo le sue lezioni . Spiega davvero benissimo !!

    • @salvoromeo
      @salvoromeo  2 года назад +4

      Da parte mia è un piacere .Buona permanenza nel mio canale

  • @Shrek53988
    @Shrek53988 2 года назад +21

    Sei un grande prof, per merito suo sono riuscito a preparare (e passare) in pochi giorni l’esame di algebra lineare. Grazie❤️

    • @salvoromeo
      @salvoromeo  2 года назад +3

      Grazie a te Federico .Mi fa piacere che questa playlist sia stata utile a molti utenti .

    • @Gigi-bn9kr
      @Gigi-bn9kr Год назад +1

      Come è stato?

  • @Manluigi
    @Manluigi 2 года назад +4

    La conica si rappresenta con una matrice simmetrica . Questa ha sempre autovalori reali . Si dimostra facilmente che ad autovalori distinti corrispondono autovettori a due a due ortogonali. Per il teorema spettrale se un autovalore ha molteplicità algebrica possiede n autovettori linearmente indipendenti e quindi si possono rendere ortogonali due a due per esempio con l'algoritmo di Gram- Schmidt.Quindi ogni matrice simmetrica è diagonalizzabile e la matrice diagonalizzante è ortogonale e non altera il valore del determinante (invariante cubico) della conica.In definitiva la matrice diagonalizzante essendo ortogonale ma 3x3 rappresenta nello spazio una rotazione ma nel piano una rototraslzione che porta una conica nella sua forma canonica. Grande teorema che finalmente professore mi ha fatto capire a fondo . Grazie di ❤️

    • @salvoromeo
      @salvoromeo  2 года назад +2

      Non ho parole per l'eccezionale spiegazione .I miei complimenti ! Grazie a te piuttosto .

  • @ivanmagini7086
    @ivanmagini7086 Год назад +1

    Grande Proffff... Grazie infinite per il Suo tempo.

  • @matteotrotti3174
    @matteotrotti3174 10 дней назад

    IL 19 HO IL SECONDO PARZIALE DI GEOMETRIA, IL PRIMO HO PRESO 29 E GRAZIE A LEI PROF SONO SICURO CHE LO SUPERERò! GRAZIE

    • @salvoromeo
      @salvoromeo  10 дней назад

      Buongiorno mi fa molto piacere leggere messaggi del genere .Speriamo bene per la prossima prova 😊

  • @dinochiari3647
    @dinochiari3647 2 года назад

    A proposito di vettori ortogonali: al minuto 20:37 ho notato che la matrice 3×3 ha gli zeri posizionati a "rombo". Proprio in questo modo i vettori sono ortogonali. Però se cambio di posto una delle righe gli zeri sarebbero posizionati a "fionda". Ma i vettori restano sempre ortogonali. Se volessi mettere un valore non nullo al posto degli zeri posizionati o a "rombo" o a "fionda" penso di compromettere l'ortogonalità.

    • @salvoromeo
      @salvoromeo  2 года назад

      Certo Dino puoi cambiare la posizione dei vettori , ma devi anche cambiare il posto degli autovalori nella matrice diagonale .

  • @AndreaPancia1
    @AndreaPancia1 Год назад

    Buongiorno professore ed Auguri per le prossime Festività. Mi è sorto un dubbio proprio ora, nel caso di un Automorfismo da V a V ( normale..non autoaggiunto) posso considerare una trasformazione lineare "f" non so da R3 a R3 che però ha una base di partenza E1 diversa da quella di arrivo E2?

  • @raffaelederoberto
    @raffaelederoberto Год назад +2

    Prof al 23:00 per lamda=-1, y non c'è proprio diventa 0=0, perchè -1-(-1) diventa 0...ha sbagliato lei li, o c'è qualcosa che non capisco?

    • @camilafreciaurbinavicuna1524
      @camilafreciaurbinavicuna1524 Год назад

      ciao! L'ho pensato anch'io, ma prova a ridurre la matrice senza spostare le righe :)

    • @salvoromeo
      @salvoromeo  Год назад

      ​@@camilafreciaurbinavicuna1524buongiorno ho visto il presente commento proprio adesso grazie al video di risposta .
      Vero che per lamba=-1 nelle equazioni cartesiane degli autospazi la y non figura .Tuttavia non è un problema .Si tratta ovviamente di un sistema indeterminato in cui Y è una variabile libera.Si tratta dello stesso e identico sistema lineare visto nelle lezioni precedenti quando ho parlato di matrici diagonalizzanti.Ho proposto (fatto apposta ) lo stesso esempio delle lezioni precendenti per rendere più fluibile la visione di tutte le 40 lezioni della playlist .

  • @c4rl037
    @c4rl037 2 года назад

    Molto ben spiegato, complimenti!!

  • @giuliorossi898
    @giuliorossi898 Год назад

    gratitudine a lei

  • @fabioponticiello6895
    @fabioponticiello6895 9 месяцев назад

  • @pinomugo8960
    @pinomugo8960 2 года назад

    minuto 15:54 sono gli autospazi o gli autovettori ad essere ortogonali? grazie

    • @salvoromeo
      @salvoromeo  2 года назад

      Gli autospazi sono a due a due ortogonali .

    • @raffaelederoberto
      @raffaelederoberto Год назад

      @@salvoromeo gli autospazi non sono gli autovettori, prof?

    • @salvoromeo
      @salvoromeo  Год назад +1

      @@raffaelederoberto diciamo che sono i sottospazi generati dagli autovettori .Il concetto è proprio quello .

  • @matteuccio9842
    @matteuccio9842 2 года назад

    Sei un grande

  • @dontouchlollo2382
    @dontouchlollo2382 10 месяцев назад

    salve avrei una domanda, quando un endomorfismo è un isometria allora la base canonica è sempre ortonormale?

  • @lorenzo01802
    @lorenzo01802 Год назад

    Salve professore, mi sono imbattuto in una domanda che chiede "Esistono interi n tali che L^n sia autoaggiunto rispetto al prodotto scalare, standard?" poichè nella domanda precedente mi chiedeva di calcolare L^n con n, valore arbitrario, dopo aver visto il video mi è chiaro cosa significhi autoaggiunto, ma non riesco a capire cosa chieda la domanda

  • @giorgioabbadessa
    @giorgioabbadessa Год назад +1

    18:19

  • @biagiociccone85
    @biagiociccone85 Год назад

    Prof mi scusi il disturbo, ma se avessi una matrice di questo tipo:
    1 1 1
    0 0 0
    3 3 3
    gli autovalori che mi trovo sono x=0, x=4.
    Trovata la base che è formata da 3 vettori {(1;0;1) ; (0;1;1) ; (1;0;3)} mi trovo che non è ortogonale, ma per il teorema spettrale, essendo questa una matrice simmetrica non dovrebbe rappresentare un endomorfismo semplice?
    La ringrazio in anticipo, grazie per le sue videolezioni sono sempre interessanti e ben fatte.
    Cordiali saluti.

    • @salvoromeo
      @salvoromeo  Год назад +1

      Buonasera Biagio ma matrice originale non è simmetrica .

  • @marcogad88
    @marcogad88 2 года назад

    Scusi ma
    quando esce il video sulle coniche e quadratiche ?

    • @salvoromeo
      @salvoromeo  2 года назад

      Buongiorno i video sulle coniche (suddivisi in più lezioni ) già sono pronti e salvati nel mio hard disk ma il rilascio della prima lezione è previsto per giugno luglio per terminare entro l'autunno il rilascio delle quadriche. Se poi le visualizzazioni aumentano , rilascerò anche tutte le lezioni entro luglio .Ho rallentato notevolmente con il rilascio dei contenuti di geometria (pur essendo pronti da tempo ) poiché non hanno ottenuto un consistente volume di visualizzazioni , concentrandomi su algebra lineare che sembra essere più richiesta .
      Con il tempo (entro due anni ) il canale sarà molto completo .È questione di attendere .
      Buona giornata

  • @gianmarcobiondi9662
    @gianmarcobiondi9662 9 месяцев назад +1

    Ma lei prof scrive al contrario sulla lavagna?

    • @mistix6241
      @mistix6241 5 месяцев назад

      Specchia il video

  • @bella-rp2rw
    @bella-rp2rw 2 года назад

    Se P non fosse ortogonale?