Methods of Functional Equations

Поделиться
HTML-код
  • Опубликовано: 13 янв 2025

Комментарии • 200

  • @voice4voicelessKrzysiek
    @voice4voicelessKrzysiek Год назад +128

    Very nice! 74 and still learning.

    • @88kgs
      @88kgs Год назад +11

      I wish to be like you.. and do maths @ age of 74..
      I am 47 now..
      👌Never stop learning
      Because when you stop learning, you stop living 👌

    • @The_Green_Man_OAP
      @The_Green_Man_OAP Год назад +6

      I'm over eighty. This is no problem. I think I'll check out 'New Calculus' with John Gabriel now.
      -See ya later!

    • @sanaeelalioui6980
      @sanaeelalioui6980 10 месяцев назад +2

      Me too 😂😂😂

    • @4anat
      @4anat 10 месяцев назад +2

      I'm only 66 and I like this training.

    • @johnkabila6617
      @johnkabila6617 10 месяцев назад +1

      Am in my 60s now relearning my favorite subject in high school.

  • @embracinglogic1744
    @embracinglogic1744 Год назад +48

    My friend, you are the best math channel on YT. In fact, you are better than 99% of math professors. Thank you.

    • @kobey3044
      @kobey3044 9 месяцев назад +1

      he is patient and his explanations are clear too. Make sense!!

  • @manuelacosta9596
    @manuelacosta9596 9 месяцев назад +1

    You are an excellent teacher. It makes me remember 45 years ago a teacher I had like you. It is very nice to know that there are still people with your passion and soul for teaching..👏👏👏

  • @uzaytakip7221
    @uzaytakip7221 9 месяцев назад +4

    This guy was born to be a teacher; humble and yet commanding.

  • @jamesharmon4994
    @jamesharmon4994 Год назад +7

    Method 2 was so obvious once I saw it. I will never "freak out" again when I see problems of this type. Thank you!!

  • @JosephChifamba
    @JosephChifamba 10 месяцев назад +17

    Did uni math 39y ago (y85/86). Our professors would just write down so fast and we would copy and later teach ourselves evenings. I envy this tutor. The best there can be, simply the best!

  • @ton_ak5119
    @ton_ak5119 Год назад +3

    What a blessing this video showed up in my for you page. Not only you've been able to make me understand something I've never saw in school, but the energy and the passion you put in your lesson are inspiring. The pauses to let us think and absorb the conceps before moving on make the video perfect.
    "Those who stop learning stop living" is now my life instructions

  • @markTheWoodlands
    @markTheWoodlands Год назад +15

    Consistently excellent work. Clear, concise and artful.

  • @selahattinkara-o5h
    @selahattinkara-o5h 9 дней назад

    Your teaching style is super. I really congratulate you. You are great.👏

  • @kumarkailasanathan961
    @kumarkailasanathan961 Год назад +2

    Concept is made very clear. Love your teachings. Wish all students will make best use of teachings

  • @rafaelcueto8694
    @rafaelcueto8694 Год назад +2

    Wow.... me encantó su forma de mostrar lo apasionante de las matemáticas y se siente lo mucho que las disfruta... me alegró de verdad... 😊

  • @williamspostoronnim9845
    @williamspostoronnim9845 Год назад +3

    Превосходно! Наконец-то вижу внятное объяснение, как решать функциональное уравнение.

    • @xgx899
      @xgx899 8 месяцев назад

      This is not a functional equation, but a triviality.

  • @tmjcbs
    @tmjcbs Год назад +17

    I did it with a slight variation of method 2: f(x) = f((x-1)+1) = (x-1)^2-3(x-1)+2 = x^2-5x+6.

  • @tayebtchikou1646
    @tayebtchikou1646 Год назад +2

    So I'm one of the masters😁 thank you so much for what are you doing for us in order to learn maths easily

  • @punditgi
    @punditgi Год назад +5

    Master of teaching. That is Prime Newtons! 😊

  • @andrewlayton9760
    @andrewlayton9760 Год назад +1

    I appreciate that you start by asking very directly "What are we trying to find?"

  • @ThePhysicsTutor-hb3iw
    @ThePhysicsTutor-hb3iw Год назад +2

    Beautiful approach to the question. You are too good. The mistake that most students would have make was to substitute (x + 1) into the function x*2 - 3x + 2 which is a terrible idea.

  • @SanePerson1
    @SanePerson1 4 месяца назад +2

    Frankly, I solved this as basically a 'word analogy' problem: x + 1 is to x as x is to x - 1. Therefore, you can solve the problem most quickly by taking the expression for f(x + 1) and if you substitute 'x - 1' in that expression everywhere you see an 'x', then simplify, you have an expression for f(x). Of course, that's is no different than doing the 't substitution' at 6:00, but it saves a step and it seems intuitively easy.

  • @dougaugustine4075
    @dougaugustine4075 5 месяцев назад

    These things have been frustrating me for awhile. But today while sitting in the bathtub, it finally hit me and I understood the simplicity of the concept using t substitution. The first method was a nice touch too but for now I will simply be happy for the imoment of realization.

  • @yoavmenuhin5360
    @yoavmenuhin5360 4 месяца назад

    Man, i just love your passion so much, you have such a good feel for teaching l.
    I'm literally feel safe when i watch your videos.
    You are an inspiration and a blessing ❤️

  • @SugarKane9547
    @SugarKane9547 9 месяцев назад

    Wow, thank God for your life. Wish I had you as my maths teacher in secondary school.

  • @glorrin
    @glorrin Год назад +86

    Sorry, I have been yelled at by my teachers so many times for not explicitly giving domain and range anytime I see a function, I now instinctively do it.

    • @ИринаРзаева-ф2с
      @ИринаРзаева-ф2с 5 месяцев назад

      Обожаю африканцев, а три - это ноль и четыре тоже. Надеюсь пончо меня.

  • @bhgtree
    @bhgtree Год назад +3

    You explain everything so well, I wish you were my teacher when I was in school (I am getting back into doing maths, hoping to do Calculus > analysis > abstract algebra etc).

  • @lindomarcarvalho1700
    @lindomarcarvalho1700 Год назад +2

    Wonderful explanation!!!! Congrats!!!!

  • @markTheWoodlands
    @markTheWoodlands Год назад +2

    Thanks!

  • @Karan_Baniya
    @Karan_Baniya Месяц назад

    Love the passion of the mann❤

  • @gooddude9211
    @gooddude9211 11 месяцев назад

    What a brilliant explanation sir. Loved it. Thank you.

  • @afaqahmed2651
    @afaqahmed2651 Год назад +1

    Your style is very impressive also you have command.😊

  • @mavanijj
    @mavanijj 9 месяцев назад +1

    I am 42 ,It’s none of my business but still trying to understand becoz in school we even don’t know the use of it great job👌👌👌

  • @99bobcain
    @99bobcain 10 месяцев назад

    Excellent presentation. So clear.

  • @prof.fabioleonardo-enemifs7808
    @prof.fabioleonardo-enemifs7808 9 месяцев назад

    Fantastic explanation!!!!
    Congratulations!!!

  • @Senorbean
    @Senorbean 2 месяца назад

    thank you so much i was struggling in algebra but this has helped me tremendously

  • @edmondscott7444
    @edmondscott7444 Год назад +2

    Very well explained sir.

  • @sameermansour1659
    @sameermansour1659 Год назад

    Such amath presentation is so clear and interesting ! Thanks alot sir .

  • @priyabrata_roy
    @priyabrata_roy 9 месяцев назад +7

    just replace x by (x-1) in f(x+1)=.....u got it directly

  • @celilkursaddereci6861
    @celilkursaddereci6861 Год назад

    your manner of looking at the screen is really funny and you are great lecturer.

  • @renluyenmontoan
    @renluyenmontoan Год назад

    I like your way of communication!❤❤❤

  • @KeithRowley418
    @KeithRowley418 9 месяцев назад +1

    Excellent teaching

  • @josejuncol
    @josejuncol Год назад

    An incredible simple class!

  • @robertlunderwood
    @robertlunderwood 5 месяцев назад +1

    I took a bit of a different take. I saw a linear become a quadratic. Thus, I can assume that the function itself is quadratic. Set f(y) = ay² + by + c. Substitute y for x+1 and solve for a, b, and c.
    Admittedly, the methods in this video are indeed superior.

  • @bengzjuggernaut6771
    @bengzjuggernaut6771 Год назад

    I like your teaching skill. Thanks.

  • @nimmira
    @nimmira Год назад +7

    I remember back in my college days, in some books we would solve such problems by "shifting" instead of assigning a dummy variable or changing the letter; Something like: Let x → x-1 (and thus converting x+1 to x); Essentially the same but I think the terminology is somewhat less confusing than when introducing a new variable (or just a dummy letter to withhold the variable) and then assigning it back to "x"

    • @lexyeevee
      @lexyeevee Год назад +3

      honestly i think i prefer the direct substitution, since it better emphasizes the idea that "x" isn't special, it's just a name we're using to refer to the same number several times, and we can change it whenever we like

    • @davidmelville5675
      @davidmelville5675 Год назад +2

      A sentence like "Let x -> x-1" gives me the heebies.

    • @CUSELİSFAN
      @CUSELİSFAN Год назад +1

      after a few tries, I came to the same method. It is easier to understand conceptually, but more prone to making arithmetic mistakes.

  • @זאבגלברד
    @זאבגלברד 11 месяцев назад

    In your second method you basically say "I will move the function back, one unit to the left". Another method is to write it in the form y=(x - p)^2 + k then add - 1 to p . Thank you for your videos. I learn from them.

  • @Hardman7
    @Hardman7 10 месяцев назад

    Your are fantastic coach!

  • @bikashmohanty3950
    @bikashmohanty3950 9 месяцев назад

    What a nice Funda sir!!!!? Amezing.....

  • @princekissi7691
    @princekissi7691 Год назад +2

    You can also represent f(x) by ax^2+bx+c. Then substitute x+1 into the variable x, simplifying would give you ax^2+(2a+b)x+(a+b+c). By comparing it to f(x+1) we can find the values of a, b, and c

    • @aavalos7760
      @aavalos7760 Год назад

      first you'd need to prove f has to be a quadratic formula.

  • @mateuszserzysko1921
    @mateuszserzysko1921 Год назад +12

    We can also think, that we get function g(x) = f(x + 1) = (x - 1)(x - 2) by moving f one step to the left.
    As we can see, roots of g are 1 and 2, so roots of f are 2 and 3 respectively. Shape of a plot won't change because of moving function one step to the left, so we get f(x) = (x - 2)(x - 3).
    I prefer to imagine, how function actually "looks like", before I'll dive into algebra ^^

    • @youben3468
      @youben3468 Год назад

      Tranlation with vector v=-1i

  • @Nikioko
    @Nikioko Год назад +21

    f(x+1) = x² − 3x + 2
    f(x) = (x − 1)² − 3(x − 1) + 2
    = x² − 2x + 1 − 3x + 3 + 2
    = x² − 5x + 6
    Now we can find the zeroes (x-intercepts), when f(x) = 0:
    x² − 5x + 6 = 0
    (x − 2)(x − 3) = 0
    x₁ = 2 ∨ x₂ = 3
    But that wasn't the question.

  • @abumarwan6
    @abumarwan6 Год назад

    I love explaining mathematics - thanks for your efforts

  • @KakdeG
    @KakdeG 9 месяцев назад

    Lovely man. Enjoyed

  • @romeusilva7886
    @romeusilva7886 Год назад

    Parabéns pelo trabalho, acompanho seu canal pelo Brasil. Continue legendando os videos em português. ❤

  • @tomgray8512
    @tomgray8512 Год назад

    An excellent teacher

  • @Tsarthak
    @Tsarthak Год назад

    very beautifully explained very nice man

  • @renatooliveira5796
    @renatooliveira5796 9 месяцев назад

    Great explanation

  • @acre4406
    @acre4406 5 месяцев назад

    I needed this, thank you!!! 😅

  • @mvr1950
    @mvr1950 9 месяцев назад

    Excellent teacher

  • @WahranRai
    @WahranRai 4 месяца назад +1

    method 3 : replace directly x by x-1 --->
    f(x-1+1) = f(x) = (x-1)^2 - 3(x-1) + 2 = x^2 - 2x + 1 -3x +3 +2 ---> f(x) = x^2 -5x +6

  • @surendrakverma555
    @surendrakverma555 10 месяцев назад

    Very good. Thanks 🙏

  • @ingorichter649
    @ingorichter649 Год назад +1

    Method 1 confuses me, method 2 I understand, thanks 👍

  • @catten8406
    @catten8406 4 месяца назад

    6:22 I got this same answer by thinking about it as a horizontal translation, and then shifting it back to f(x)
    If you're given f(x+1) (which is f(x) shifted 1 unit to the left), you can shift it back 1 unit to the right and get f(x)!

  • @marcobenatar7638
    @marcobenatar7638 10 месяцев назад

    I personally prefer Method 1. Thanks, very well explained.

  • @TheRhythmOfMathematics
    @TheRhythmOfMathematics Год назад

    Simple problem but good lesson. Thank you

  • @yduck999
    @yduck999 10 месяцев назад +1

    nice very good thank u

  • @devcoolkol
    @devcoolkol 11 месяцев назад

    Dammit you explain it so smoothly.

  • @netravelplus
    @netravelplus 10 месяцев назад

    Maths is fun. You make it interesting.

  • @lazaresokoundo8619
    @lazaresokoundo8619 10 месяцев назад

    Super❤❤❤

  • @bortiz1951
    @bortiz1951 10 месяцев назад

    Excelente. El metodo 2. Me aclaro la razón de la necesidad del cambio de variable en integración.

  • @nizogos
    @nizogos Год назад +1

    Why don't we plug x-1 on the original function?It seems more intuitive than manipulating the expression to make the x+1 appear.

  • @AbouTaim-Lille
    @AbouTaim-Lille Год назад +2

    f(g(X)) =h(X). to calculate f(X) we need to calculate g-¹ supposing that g does have an inverse. So. If u= g(X) then f(u) = hog-¹(u) = h(g-¹(u)).

  • @akshadnimbarte
    @akshadnimbarte Год назад +1

    This concept when I did it by myself took me ages to understand, the reason was I always got confused between the the two x. In the thing is that both that x are completely different! So change one to some other letter. Then your question would make a lot of sense

  • @fabiancullquicondor8327
    @fabiancullquicondor8327 8 месяцев назад

    Amazing! Thank you

  • @mitinjemaziku
    @mitinjemaziku 3 дня назад

    Amazing

  • @user-haruka2005
    @user-haruka2005 Год назад

    Does the second method means we substitute the inverse function of y=x+1

  • @ragiharshithreddy
    @ragiharshithreddy Год назад

    It is so cool sir

  • @salvemoslasdosvidasargentina
    @salvemoslasdosvidasargentina Год назад

    formidable teacher. where are you from? your English pronunciation is excellent. thank you very much.

  • @profabhishekiitr569
    @profabhishekiitr569 Год назад

    Excellent

  • @FredFred-wy9jw
    @FredFred-wy9jw 9 месяцев назад

    Nice explanation… after an PhD and nearly 40 years in industry I have qualms about the way we teach “substitute” … use the “t” substitution… or use your “u” substitution… I have, more than once, had graduate engineers stumble and insist a substitution cannot be used because there already is a “t” or “u” in the equation…. Just a thought

  • @maxime9636
    @maxime9636 Год назад

    Nice❤👍🙏🙏🙏

  • @okarakoo
    @okarakoo Год назад +3

    Nice video but I'd argue that the two methods are essentially the same: the 1st is a sort of "implicit" variable substitution, the 2nd is the classical, "explicit" variable substitution we all know and love. Other than that, nicely presented as always.

  • @bhargavsamavedula5536
    @bhargavsamavedula5536 Год назад

    Thanks a ton 🎉🎉

  • @shravan8292
    @shravan8292 4 месяца назад

    This channel is beautiful

  • @mohasalhi1587
    @mohasalhi1587 Год назад

    Mercie explications extraordinaire

  • @lazaresokoundo8619
    @lazaresokoundo8619 10 месяцев назад

    Yes!!! Congratulations !!

  • @rotimishaibu6790
    @rotimishaibu6790 Год назад

    Fantastic

  • @TariqKhan-fx9ux
    @TariqKhan-fx9ux 9 месяцев назад

    Awesome!!

  • @marcovidal2810
    @marcovidal2810 9 месяцев назад

    Te felicito claro,.consiso preciso

  • @alipourzand6499
    @alipourzand6499 Год назад +1

    A third method would be the identification.
    f(x) = ax^2 + bx + c
    f(x+1) = a(x+1)^2 + b(x+1) +c
    = ax^2 + 2ax + a +bx + b + c
    = ax^2 + (2a+b)x + a + b + c
    By identification:
    a = 1, 2a + b = -3, a + b +c = 2
    b = -5, c = 6
    f(×) = x^2 - 5x + 6

  • @mdasifeqbal2323
    @mdasifeqbal2323 Год назад +3

    Very short-cut method.
    Alternatively, we can replace x by (x-1) to find f(x).

  • @umitserbestinsan3227
    @umitserbestinsan3227 10 месяцев назад

    good..... Im 66 but continue learning still...

  • @jacquisiqueira7443
    @jacquisiqueira7443 10 месяцев назад

    That was great, thanks!

  • @bijipeter1471
    @bijipeter1471 10 месяцев назад +1

    Thank you,sir

  • @zoran.grujic
    @zoran.grujic 9 месяцев назад

    My method:
    Assume f(x) = a x^2 + b x + c.
    Then f(x+1) = a x^2 + (2 a + b) x +a + b + c == x^2 - 3x + 2.
    So a=1, 2 a + b = -3 and a + b + c = 2.
    We get a = 1, b = -5 and c = 6.
    f(x) = x^2 -5x + 6.

  • @notsm2197
    @notsm2197 9 месяцев назад

    I would also go from m2 but first differentiate it then put t=x+1
    It would be little bit quicker since you don't have to square

  • @albertlondres4455
    @albertlondres4455 10 месяцев назад

    When mathematics became art ❤

  • @m.h.6470
    @m.h.6470 Год назад +9

    Solution:
    f(x + 1) = x² - 3x + 2
    u = x + 1 |-1
    x = u - 1
    f(u) = (u - 1)² - 3(u - 1) + 2
    f(u) = u² - 2u + 1 - 3u + 3 + 2
    f(u) = u² - 5u + 6
    f(x) = x² - 5x + 6

  • @gilblas5277
    @gilblas5277 10 месяцев назад

    Excellent ,en plus le gars est très sympa !

  • @pizza8725
    @pizza8725 Год назад +2

    If f(x+1)=x²-3x+2 then wouldnt f(x)=(x-1)²-3(x-1)+2 and wouldnt this be a eazier way to solve this

  • @vitotozzi1972
    @vitotozzi1972 10 месяцев назад

    I repeat it once again: it cannot be explained in a clearer way. Congratulation Newtons

  • @CloudBushyMath
    @CloudBushyMath 9 месяцев назад

    Method of Masters ✍

  • @McAluso
    @McAluso Год назад

    Whenever I see functions I freak out. But today I see light ❤❤❤.