I Solved a Very Irrational Equation

Поделиться
HTML-код
  • Опубликовано: 14 дек 2024

Комментарии • 95

  • @SyberMath
    @SyberMath  Год назад +5

    Comparing e^pi and pi^e: ruclips.net/video/jxMcn7icw7c/видео.html

  • @Grundini91
    @Grundini91 Год назад +67

    Our Calc teacher in high school made us remember e out to 15 digits. The mnemonic he taught us was 2.7, Andrew Jackson, Andrew Jackson, Right Triangle. This worked because the first 15 digits of e are 2.718281828459045. Andrew Jackson was the President that won the US election in 1828, and 45-90-45 makes an isosceles right triangle.

    • @SyberMath
      @SyberMath  Год назад +11

      Mind-blowing!!! 😍💪👏

    • @ElChocoLoco
      @ElChocoLoco Год назад +3

      why?

    • @falconsloth5967
      @falconsloth5967 Год назад

      ​@@ElChocoLocotests are stupid

    • @HoSza1
      @HoSza1 Год назад +4

      how much have you profited from it?

    • @audience2
      @audience2 Год назад

      Andrew Jackson served 2 terms and was the 7th president of the USA, which takes care of the first two digits.

  • @القناةالترفيهيةالتعليمية-ج1ذ

    Apply the Ln in the two sides of the equation and it will be solved by itself

  • @UTAngoid
    @UTAngoid Год назад +13

    I had a go before watching this video and started by taking logs straight away:
    (x + pi).ln(e) = (x + e).ln(pi)
    But ln(e) = 1. Therefore, and expanding the right hand side at the same time:
    x + pi = x.ln(pi) + e.ln(pi)
    Collecting the x terms onto the LHS and everything else onto the RHS gave me
    x - x.ln(pi) = e.ln(pi) - pi
    x(1 - ln(pi)) = e.ln(pi) - pi
    x = (e.ln(pi) - pi) / (1 - ln(pi))
    This is the same as the solution in the video, but written slightly differently; I could multiply both top and bottom by -1 to re-arrange:
    x = (pi - e.ln(pi)) / (ln(pi) - 1)

    • @andy_in_colorado7060
      @andy_in_colorado7060 Год назад +2

      My steps were almost exactly the same as yours.

    • @SyberMath
      @SyberMath  Год назад +1

      very good! 🤩🤩

    • @SanePerson1
      @SanePerson1 Год назад +1

      Exactly, but it would have made the video six minutes shorter.

  • @kicorse
    @kicorse Год назад +9

    I did it using the change of base, which also gave complex solutions. The imaginary part is (2n pi)/(ln(pi) -1) where n is any integer. The real solution is the case with n = 0, and the real part is (pi - e ln(pi)) / (ln(pi) - 1) in all cases.
    It fits with intuition that x should be a small positive value because e^pi is only slightly greater than pi^e, so it would only need a small increase in both exponents for the larger base (pi) to compensate for this.

    • @SyberMath
      @SyberMath  Год назад

      Wow!

    • @gkotsetube
      @gkotsetube Год назад

      What change of base, exactly?

    • @kicorse
      @kicorse Год назад +1

      @@gkotsetube pi^(x+e) = e^(ln(pi)(x+e))

  • @oenrn
    @oenrn Год назад +8

    By the fundamental theorem of engineering:
    e = 3 = pi
    Therefore the answer is all x € C.

  • @benyasir423
    @benyasir423 Год назад +2

    Et si on prend le logarithme ( ln ) des deux membres de l'équation dés le début.
    Où je me suis trompé?. Merci

  • @alextang4688
    @alextang4688 Год назад +6

    Take natural log (ln) and separate x. 😉😉😉😉😉😉

  • @EugeneKogan-e8z
    @EugeneKogan-e8z Год назад +1

    I appreciated that you showed essential properties of logarithms in this example. Thanks!

  • @claudelebourlegat
    @claudelebourlegat Год назад +2

    simple ! use (ln) directly

  • @jacksonstarky8288
    @jacksonstarky8288 Год назад +2

    I was wondering about a base of pi for logarithms right before the video asked the question. I'm not sure what it would be useful for, but I'm a recreational mathematician who hasn't taken a formal mathematics course in three decades.

    • @elijahmathsclass626
      @elijahmathsclass626 Год назад

      Check our channel for simplified maths videos like this.
      youtube.com/@elijahmathsclass626?si=-Y-M8HbaaD09oq4E

  • @arantheo8607
    @arantheo8607 Год назад

    k is real and positive
    (e/pi)^x has as its domain the set R and the set of positive number as the range
    As ( e/pi) < 1 , the graph of f(x) = (e/pi)^x - the base is smaller than 1- slopes down as
    it moves to the right, but it is always positive.
    As it moves to the left, the graph grows tall very quickly
    One-to-one and onto

  • @sophiophile
    @sophiophile Год назад +1

    Are there complex solutions as well?

    • @SyberMath
      @SyberMath  Год назад

      @@shmuelzehavi4940 check @kicorse's comment

    • @SyberMath
      @SyberMath  Год назад

      check @kicorse's comment

  • @abhaygvasista9433
    @abhaygvasista9433 Год назад

    this solution is miraculously close to the value of i^i

  • @roykay4709
    @roykay4709 Год назад

    I just took the ln at the second step. Same result. I was hoping for a while, that you ended up with something more elegant.

  • @levskomorovsky1762
    @levskomorovsky1762 Год назад +4

    (x + π)ln e = (x + e) ln π
    x - x ln π = e ln π - π
    x (1 - ln π) = e ln π - π
    x = (e ln π - π)/(1 - ln π)

  • @barberickarc3460
    @barberickarc3460 Год назад

    If we ln both sides right away then isolate the x we get the answer pretty quickly.
    x = [ ln(pi) (e - pi)] / [1 - ln (pi)]
    Try plugging it back in to the original equation, everything cancels so beautifully, very satisfying!

    • @SyberMath
      @SyberMath  Год назад

      Nice! You rock 🤩🤩

    • @DanielFSmith
      @DanielFSmith Год назад

      That was the thing that surprised me in this video! (The solution was pretty mundane, to my disappointment.)

  • @giorgiocanal1659
    @giorgiocanal1659 Год назад

    You can solve it in a simpler way by changing the base on the right side π=e^log(π). Then you take the exponents and solve algebraically for x.

  • @manuelgonzales2570
    @manuelgonzales2570 Год назад

    Excellent. Thank you!

  • @mbmillermo
    @mbmillermo Год назад +7

    These days, and for years earlier, "log" usually means ln, and we use log10 to get the base-10 log, but this isn't how Google does it, for some reason. I think "log" used to mean base-10 log because of how we used slide rules with base-10 logs all the time. Those days are long gone.

    • @bsmith6276
      @bsmith6276 Год назад +5

      What I see is that log without a specified base meaning log_10 vs ln depends on what level of mathematics work you are at. Highschool and up to basic calculus usually uses the convention that log means log 10 and higher level college courses use log means ln. Information that Google scrapes is dominated by the Highschool/basic calculus crowd.

    • @StevenMRSenior
      @StevenMRSenior Год назад +2

      Log has meant base 10 and Ln base e for over fifty years to me. All the maths videos I have seen on RUclips use this convention and they are not only to high school level. I didn’t do a degree in maths but did do some degree level maths in the engineering degree that I did.

    • @mbmillermo
      @mbmillermo Год назад +2

      A few facts about software: GNU awk, GNU Octave, MATLAB and GNU R all use log() for log in base e. Python does this too, but there is an option for a second argument which is the base. Thus, in Python, log(2) would be the natural log of 2, but log(2,10) would be the base-10 log of 2. Both GNU Octave, MATLAB and GNU R have log10() functions, but in awk you must use log()/log(10) instead.

    • @zawatsky
      @zawatsky Год назад

      @@mbmillermolog не пишется без основания. Log₁₀x правильно пишется как lgx.

    • @mbmillermo
      @mbmillermo Год назад +1

      @@zawatsky lgx? I haven't seen it, but apparently the ISO standard is that we should use lb, ln and lg for bases 2, e and 10, respectively. Thanks!

  • @benYaakov
    @benYaakov Год назад

    At first sight , I thought it wouldn't have closed form. But simplification works out smooth.

  • @barryzeeberg3672
    @barryzeeberg3672 9 месяцев назад

    Much simpler: take ln() of both sides, then you have a simple algebraic equation that can be directly solved for x, giving the same solution that takes 8 minutes in the video.

  • @snowfloofcathug
    @snowfloofcathug Год назад

    There was a Pi memorisation competition at school and we had multiple from my class of 14 memorising a few hundred, I got to 1200 by the third year (only really memorising more during the month leading up to the day each year)

  • @berkeunal5773
    @berkeunal5773 Год назад

    Where are you from? What is your main language?

  • @mcwulf25
    @mcwulf25 Год назад +1

    Similar to my solution. Didn't bother with the k.

  • @NirDagan
    @NirDagan Год назад

    I applied ln on both sides...

  • @Mehrdad_Basiry
    @Mehrdad_Basiry Год назад +1

    Beautiful question...❤❤❤.

  • @audience2
    @audience2 Год назад

    x = log_e/pi ((pi^e)/(e^pi)) looks nicer

  • @ryanrahuelvalentine2879
    @ryanrahuelvalentine2879 Год назад

    My Hero.

  • @SergeySvotin
    @SergeySvotin Год назад +1

    Wolfram Alpha was more precise ^ ^

    • @SyberMath
      @SyberMath  Год назад

      of course 😁😁

    • @SergeySvotin
      @SergeySvotin Год назад

      @@SyberMath you can just ln both sides right from the start, it would be more simple and you'd get the result in wolfram alpha state)

  • @davidpatterson5426
    @davidpatterson5426 Год назад

    With a calculator I get e^pi = pi^e, so e^x = pi^x, so x =0.

    • @davidpatterson5426
      @davidpatterson5426 Год назад

      Oops, my bad… they’re not equal… must have miskeyed something.

  • @scottleung9587
    @scottleung9587 Год назад

    Nice!

  • @juergenilse3259
    @juergenilse3259 Год назад

    e^(x+pi)=pi^(x+e)
    ln(e^(x+pi))=ln(pi^(x+e))
    (x+pi)*ln(e)=(x+e)*ln(pi)
    x+pi=x*ln(pi)+e*ln(pi)
    x*(ln(pi)-1)=pi-e*ln(pi)
    x=(pi-e*ln(pi))/(ln(pi)-1)
    I tink i came to the solution (except for the factor -1 on enumerator and denominator, which does not change te value) with less steps, because i first do ln on both sides.

  • @alterherrentspannt
    @alterherrentspannt Год назад

    I like your math puzzles.

  • @RbWadim
    @RbWadim Год назад

    Bruh. Why not just log the initial statement, and after x+pi = (x+e)*ln(pi) get an answer in 2 steps => x(1-ln(pi)) = e*ln(pi) - pi => answer?

  • @marklevin3236
    @marklevin3236 Год назад

    Fake ln of b oth sides and we have a simpler linear equation. Although there are logarithmic coefficients...

  • @shlomobachar4123
    @shlomobachar4123 Год назад

    Who invents this kind of crazy problems? 😅

    • @SyberMath
      @SyberMath  Год назад +1

      Crazy people like me 🤣

    • @shlomobachar4123
      @shlomobachar4123 Год назад

      @@SyberMath And I asked since I was in school who sits and creates these unsolvable problems instead of going to the beach? Now I found…

    • @shlomobachar4123
      @shlomobachar4123 Год назад

      @@SyberMath Now I will invent a question: Solve x^i=i^x ?

  • @dominiquebercot9539
    @dominiquebercot9539 Год назад

    (Pi)^(x+e)= e^(x+e)lnpi
    A partir de là, ça va tout seul!!!!

  • @wes9627
    @wes9627 Год назад

    (x + π) * ln(e) = (x + e) * ln(π)
    ln(e) = 1
    x + π = (x + e) * ln(π)
    [1 - ln(π)]*x = e * ln(π) - π
    x = [e * ln(π) - π]/[1 - ln(π)]

  • @martialversaux5746
    @martialversaux5746 Год назад

    And why is it surprising ?

  • @marceliusmartirosianas6104
    @marceliusmartirosianas6104 Год назад

    {{{ po versijos--}}}]e^Pix= e^Pix}}}=\ epix-ePix\=e^Pix-1=epix/1=epix = wpix^2=2 tada epix=1 e=o; pi=1'; x=1 ;

  • @michaelyap939
    @michaelyap939 Год назад

    The question of this video is OK, not the best and not the worst. But pretty obvious you intentionally make the solution longer than necessary! You don’t have to do that, because such action bring down quality of your channel.

  • @giuseppetornabene989
    @giuseppetornabene989 Год назад

    ci volevano solo 3 passaggi; devi studiare MOLTISSIMO ed evitare di fare queste figure

  • @tamilselvanrascal5956
    @tamilselvanrascal5956 Год назад

    🎉🎉🎉

  • @ThanhNhan_GiaSu234
    @ThanhNhan_GiaSu234 Год назад

    Hi❤❤❤

  • @barakathaider6333
    @barakathaider6333 Год назад

    👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад +1

    x=(π-elnπ)/(lnπ-1)=0,20655...