Almost an IMO Problem | IMO Shortlist 2019 N2

Поделиться
HTML-код
  • Опубликовано: 11 дек 2024

Комментарии • 140

  • @mcwulf25
    @mcwulf25 2 года назад +106

    I always start these kinds of questions with a=b=c. In this case we get a = cube root of 3. As all three variables can't be higher than this, at least one is lower, which means c=1. Repeat and we get b=1 or 2. Try both to get (3,2,1) and its combos.

    • @typo691
      @typo691 2 года назад +11

      Can you explain why all three variables cant be higher than cbrt(3)? I dont quite get the implication

    • @mcwulf25
      @mcwulf25 2 года назад +16

      @@typo691 Now I look again I see that it's not a given. If the RHS is a constant, yes. But actually we need to demonstrate that it's true (or not).

    • @raytheboss4650
      @raytheboss4650 Год назад +6

      @@typo691 using the AM GM inequality

    • @fede9003
      @fede9003 4 месяца назад +1

      @@raytheboss4650Hi! I know it’s from a while ago, but how would you do this with AM-GM?

    • @jyotishka
      @jyotishka 4 месяца назад

      @@typo691 cbrt(3) is the upper bound of LHS. Also can we say that abc is the volume of a cuboid which is maximum when a=b=c?

  • @AllanKobelansky
    @AllanKobelansky 3 года назад +86

    Well done. Well presented. You are in Michael Penn territory. The road to 10k subs looks easily attainable.

    • @clarinetowl7554
      @clarinetowl7554 7 месяцев назад +1

      there will never be another michael penn. He is far too powerful.

    • @browhat6935
      @browhat6935 5 месяцев назад +1

      ​@@clarinetowl7554the one piece is real

  • @tonyhaddad1394
    @tonyhaddad1394 4 года назад +21

    For an easy way if a=b
    a^3(a-2)=1 then we do not have a positive integer solution for (a)
    There for (a) can not equal (b)

  • @moonlightcocktail
    @moonlightcocktail 2 года назад +15

    My solution was similar up to 3:00.
    The equation is symmetric. Wlog sps
    a >= b >= c.
    a + (b3 + c3)/a2 = b2c2.
    this is an integer, so a2 | b3 + c3.
    Since a >= b >= c, b3 + c3

    • @Kettwiesel25
      @Kettwiesel25 10 месяцев назад +2

      b3+c3 isn't actually maximized if b=c=√√(3a)though. I see that bc=√(3a), but b=c is actually the minimum over all such solutions.

  • @sa0o923
    @sa0o923 Год назад +8

    2:29
    how do you conclude a2

    • @lucasmcguire1554
      @lucasmcguire1554 10 месяцев назад +3

      Because a^2 divides b^3 + c^3. To see why this is just look at the original equation to find that a^2 clearly divides a^3 + b^3 + c^3 then get rid of the a^3

  • @theuserings
    @theuserings Год назад +4

    3:40 why is b >= 2 when c = 2?

    • @ericlorentzen9089
      @ericlorentzen9089 11 месяцев назад +4

      Because of the initial inequality a >= b >= c.

  • @mumtrz
    @mumtrz 7 месяцев назад +12

    Here's a homework:
    a^b + b^c + c^a = (abc)^abc

    • @AyushKumar-ot3zr
      @AyushKumar-ot3zr 6 месяцев назад

      do it urself

    • @mumtrz
      @mumtrz 6 месяцев назад

      @@AyushKumar-ot3zr you think I'd give homework without knowing the answer myself? 🤣

    • @KaranSingh-qw7cn
      @KaranSingh-qw7cn 6 месяцев назад +2

      How to solve it ? Give me a hint

    • @amgalanbayarshagdar9435
      @amgalanbayarshagdar9435 6 месяцев назад

      This equation has only 3 solutions that [a; b; c]= [2; 1; 1], [1; 2; 1], [1; 1; 2]

    • @amgalanbayarshagdar9435
      @amgalanbayarshagdar9435 6 месяцев назад

      ​@@KaranSingh-qw7cn use equality that a=>b=>c

  • @tvvt005
    @tvvt005 2 месяца назад

    4:02 wait how did we Ho from c^4 b =32??

    • @suhail9511
      @suhail9511 Месяц назад +2

      c⁴b =2
      Then c⁴b>=32 but it must be less than or equal to 18
      Hence c cannot be 2 or more

  • @Navodayaclass_2211
    @Navodayaclass_2211 2 месяца назад +1

    By intuition i found abc triples -1,1,1 ordered

  • @adamzoltan1685
    @adamzoltan1685 2 месяца назад

    Or (abc)**2 = 36 thus abc = 6 so a and b and and c is less than 6 and you can only divide 6 by 1,2,3,6 you cam just check for them

  • @jaysy2980
    @jaysy2980 4 месяца назад

    Why not just remove common factor in 7:44? We can divide them out since a is a positive integer and therefore the expression a^2-a+1 is never 0.

  • @smashliek5086
    @smashliek5086 Год назад +1

    3:27 i dont get it, why can RHS exceed 2 ?

    • @icebeargt5142
      @icebeargt5142 10 месяцев назад

      i think because C > B hence it (c/b) will be less than 1

    • @joehollander1810
      @joehollander1810 7 месяцев назад

      @@icebeargt5142*C

  • @anupamrawat2581
    @anupamrawat2581 3 года назад +7

    Amazing solution
    Hope your channel grows soon
    Your problems are great

  • @absolutezero9874
    @absolutezero9874 10 месяцев назад +1

    Hi
    Why is it at 5:07,
    a² - b | a³ + 1 - a(a² - b) ?
    Thank you

    • @absolutezero9874
      @absolutezero9874 10 месяцев назад

      Did you see my question?

    • @jm2270
      @jm2270 9 месяцев назад

      Because we established a² - b | a³ + 1 and naturally a² - b | a(a² - b)

    • @absolutezero9874
      @absolutezero9874 9 месяцев назад

      @@jm2270
      Oh I see. Thank you
      This RUclipsr doesn’t reply at all

    • @Emre67511
      @Emre67511 7 месяцев назад +1

      ​@@jm2270what does a^2 - b | a^3 + 1 mean ? I don't know if they use different symbols in my country but I don't understand that operation at all ?

    • @jm2270
      @jm2270 7 месяцев назад

      @@Emre67511 x | y means x divides y.

  • @MgMG-ig4qg
    @MgMG-ig4qg 2 года назад +2

    I don’t get how we get that a^2

    • @reeeeeplease1178
      @reeeeeplease1178 2 года назад

      Just a line above, he got that a^2 is a divisor of b^3 + c^3 and since all of them are positive, a^2 has to be less or equal to b^3 + c^3

    • @MgMG-ig4qg
      @MgMG-ig4qg 2 года назад

      @@reeeeeplease1178 thanks. What does he mean when he says that a^2 “is divisor” of …. and why can he say it?

    • @MgMG-ig4qg
      @MgMG-ig4qg 2 года назад

      Applying it to the solution, we that 9 (a^2) isa divisor of 27 (a^3)+ 8 (b^3) +1 which is right, but how do we know? And knocking off a^3 how do we know the inequality still holds?

    • @reeeeeplease1178
      @reeeeeplease1178 2 года назад +1

      @@MgMG-ig4qg well from the original equation we know that a^2 is a factor of (abc)^2 and since (abc)^2 = a^3 + b^3 + c^3, we know that a^2 has to be a factor of a^3 + b^3 + c^3
      This implies that a^2 is a factor of b^3 + c^3 (because a^2 divides a^3)

    • @MgMG-ig4qg
      @MgMG-ig4qg 2 года назад

      @@reeeeeplease1178 riiiiiiight :). Thank you so much….

  • @mra4167
    @mra4167 3 месяца назад

    If negative was possible then, a=1,b=-1 and c=1, can be a solution.

  • @Wu-Li
    @Wu-Li 3 года назад +13

    You're a genius

  • @turtlez2776
    @turtlez2776 2 года назад

    At 5:07, how do we know a < b^2? Isn't writing that a^3 + 1 - a(a^2 - b) is positive an assumption?

    • @fasebingterfe6354
      @fasebingterfe6354 2 года назад

      --- a < b^2 ---
      We know that the inequality a < b^2 is true , because for an equation M-N , where M and N are natural numbers , If M-N is negative , N-M is positive and vice-versa. This also applies when one of the numbers is squared . You can try this with any two natural numbers that you want.
      --- a^3 + 1 - a(a^2 - b ) ---
      According to the inequality a^2 - b < 0 , If we multiply both sides by a , we get a ( a^2 - b ) < a ( 0 ) , which doesn't change what it holds .
      Coincidentally , a^2 - b | a^3 + 1 - a( a^2 - b ) has the same effect that a^2 - b | a^3 + 1 - ( a^2 - b ) has.

    • @cantcommute
      @cantcommute 2 года назад

      a(a^2-b)

    • @turtlez2776
      @turtlez2776 2 года назад

      @@cantcommute understand.

    • @Emre67511
      @Emre67511 7 месяцев назад +2

      Where does it even say a < b^2 ? Or where does it come into play ?

  • @ericlorentzen9089
    @ericlorentzen9089 11 месяцев назад +1

    How did you determine that (abc)^2

    • @DoReMeDesign
      @DoReMeDesign 11 месяцев назад +2

      Look again at the question statement and the previous line ;)

    • @ericlorentzen9089
      @ericlorentzen9089 11 месяцев назад +1

      @@DoReMeDesignAh. I got it. Thanks for the reply!

  • @이름-k8v6v
    @이름-k8v6v 11 месяцев назад

    The most entertaining math video I've ever watched

  • @bagasramadhan1677
    @bagasramadhan1677 3 года назад +1

    why (c/b)^3 Is Equal To 1 ?

    • @sender1496
      @sender1496 2 года назад +2

      I'm guessing that since c and b are integers, and c < b, c/b has to be less than 1 and hence bounded by 1

  • @Mrpallekuling
    @Mrpallekuling 3 месяца назад

    A nice problem. I like!

  • @dionisis1917
    @dionisis1917 4 года назад +5

    Please make a platform which we can write our favourite problems

    • @letsthinkcritically
      @letsthinkcritically  4 года назад +4

      Feel free to let me know here! I will make videos on problems that you suggest.

  • @rounaksambhwani2623
    @rounaksambhwani2623 4 года назад +20

    man pls can you recomend me any book of maths which starts from basic to this level pls

    • @letsthinkcritically
      @letsthinkcritically  4 года назад +23

      I learn problem solving tricks by browsing content in Art of Problem Solving (AoPS: artofproblemsolving.com).
      I usually recommend online resources rather than books nowadays because online resources are better organised and you can find them very easily.

    • @rounaksambhwani2623
      @rounaksambhwani2623 4 года назад

      @@letsthinkcritically thanks !!!!

    • @krishgupta6518
      @krishgupta6518 3 года назад +2

      You can try pathfinder for prmo by prashant jain

    • @TechToppers
      @TechToppers 3 года назад +1

      @@krishgupta6518 That book just has a ton of problems without solutions. If somehow you get stuck on a problem, game over. Plus it does not have advanced level problems.

    • @ShefsofProblemSolving
      @ShefsofProblemSolving 3 года назад +3

      Depends on the field. Here are some good books:
      Number Theory:
      ->104 Problems in Number Theory by Titu Andreescu
      Geometry:
      ->EGMO by Evan Chen
      Combinatorics:
      -> Problem Solving Strategies by Engel (old, but has some good explanations of basic techniques)
      -> Olympiad Combinatorics by Pranav Sriram (though this is advanced already)
      Competitions to look at (in order of difficulty):
      -> Junior Balkan Math Olympiad
      -> Tournament of Towns (especially for combinatorics)
      -> JUSAMO
      -> European Girls Math Olympiad
      -> National Olympiads of countries like Russia, Bulgaria, Brazil, Vietnam, South Korea, China, USA

  • @chrismcgowan3938
    @chrismcgowan3938 2 года назад

    a=1,b=2,c=3

  • @sparkaks-gr8647
    @sparkaks-gr8647 4 года назад +7

    Wow nice problem and soln too!

  • @boomer1248
    @boomer1248 10 месяцев назад

    how can we say that a^2 | a^3+b^3+c^3?

    • @Jan-vz5ge
      @Jan-vz5ge 10 месяцев назад

      because from (abc)^2

    • @boomer1248
      @boomer1248 10 месяцев назад

      Oh thanks lol@@Jan-vz5ge

  • @mukaddastaj5223
    @mukaddastaj5223 3 года назад +2

    Thanks for these vids u make! U really do inspire)

  • @abirliouk8155
    @abirliouk8155 3 года назад

    Im sorry but why 1+ab>a(b+1)-b 6:26

    • @marcotosini7156
      @marcotosini7156 3 года назад

      because a^2 -b | 1 + ab then 1 + ab >= a^2 -b
      from a >= b+1 follow that a^2 -b >= a * (b+1) - b (it's simple substitution of a with b in a^2) then 1+ab >= a(b+1)-b

  • @prithujsarkar2010
    @prithujsarkar2010 4 года назад +6

    Can you check this problem out from 1992 AIME Problems/Problem 15 ?
    The problem states that
    Define a positive integer $n$ to be a factorial tail if there is some positive integer $m$ such that the decimal representation of $m!$ ends with exactly $n$ zeroes. How many positive integers less than $1992$ are not factorial tails?
    One of my fav AIME problems :)

    • @letsthinkcritically
      @letsthinkcritically  4 года назад +3

      Sure thing!

    • @mr.kaiden7159
      @mr.kaiden7159 11 месяцев назад +1

      @@letsthinkcritically when c=1
      a³+b³+1=(ab)²
      (a+b)(a²-ab+b²)=(ab-1)(ab+1)
      Two condition
      a+b=ab+1 and a²-ab+b²=ab-1 (no solutions because (a-b) ²=-1)
      a+b=ab-1 and a²-ab+b²=ab+1
      (from this system we get b=2 and a=3)
      How to find c=1 is insane solutions 🙏

  • @tonyhaddad1394
    @tonyhaddad1394 4 года назад +6

    5:45 mistake
    If (a)=1 then a^3(a-2) is = -1 which not 1

    • @letsthinkcritically
      @letsthinkcritically  4 года назад +6

      That’s my point, I was trying to say that this would lead to a contradiction.

    • @tonyhaddad1394
      @tonyhaddad1394 4 года назад +3

      @@letsthinkcritically thank u for your reply and yes now i get it 💓💓

  • @sejr8053
    @sejr8053 3 года назад +1

    Its 1, 2 and 3.

  • @fansuli427
    @fansuli427 4 года назад +4

    Good

  • @katagagyi3523
    @katagagyi3523 3 года назад +3

    I feel really dumb but I don't understand how comes in 1+ab>=a²-b😅😅. And also above that part a²-b| a²+1 means that a²-b divides a²+1 or does it mean subtraction?

    • @fix5072
      @fix5072 3 года назад +9

      No youre not dumb, he just speaks really fast! The step follows because he earlyier showed that (a^2)-b divides a*b+1 and if an integer divides another integer, the dividing integer is less then or equal than the divided integer. Dont let your head hang down if u dont hear/understand one Thing!

    • @fix5072
      @fix5072 3 года назад +5

      Sometimes i also cant catch up in These yt Videos, because its way above the Things we do in class and we dont do any number theory in class as well

    • @katagagyi3523
      @katagagyi3523 3 года назад

      @@fix5072 thank you, i get it now. :::)

    • @katagagyi3523
      @katagagyi3523 3 года назад

      @@fix5072 and one more question: if c²b

    • @fix5072
      @fix5072 3 года назад

      @@katagagyi3523 if youre talking about (c^4)*b =c thus b>=2 and the entire lhs woul be atleast (2^4)*2 which is bigger than 18

  • @mathdetectivej9764
    @mathdetectivej9764 Год назад

    very interesting problem!

  • @awildscrub
    @awildscrub 3 года назад +3

    Why does this guy sound like Uncle Roger

  • @muhammadafifuddin9353
    @muhammadafifuddin9353 2 года назад

    Nice to learn it.

  • @ZIN24031980
    @ZIN24031980 3 года назад +1

    Thanks, I liked your way of solution, it's very nice.

  • @sohumsharma2892
    @sohumsharma2892 Год назад

    Wow, nice.

  • @dionisis1917
    @dionisis1917 4 года назад +9

    I think that it's a bit easy for IMO.

  • @alexkonopatski429
    @alexkonopatski429 Год назад +1

    Nice solution! How long did it take you to solve that?

    • @Emre67511
      @Emre67511 7 месяцев назад +2

      He didn't find it himself. He just writes it down. Why do you think he doesn't explain anything at all except the most obvious things ?

    • @andrea-mj9ce
      @andrea-mj9ce Месяц назад

      ​@@Emre67511How do you know 3:19 this. He did explain the whole reasoning in the video

  • @syedamashukaashrafi2755
    @syedamashukaashrafi2755 2 года назад

    Have you tried plugging a=-1, b=1, c=0,1?

  • @ryanclothier6853
    @ryanclothier6853 3 года назад +2

    Why does it become 3a^3 in the beginning and not a^6?

  • @fansuli427
    @fansuli427 4 года назад +4

    I really like your video. Thank you

  • @theimmux3034
    @theimmux3034 3 года назад +1

    I woulda not been able to pull of any of those calculations but I just happened to know that the sum of first n cubes is the sum of the first n integers squared and six happens to be equal to the sum of its factors. Does my reasoning also mean that (a,b,c) = (1,2,3) is the only solution?

    • @mishania6678
      @mishania6678 Год назад +2

      we don’t know whether a,b,c are consecutive so this formula does not actually works here

  • @rk-ds4vl
    @rk-ds4vl 7 месяцев назад

    Very good

  • @danicharif7224
    @danicharif7224 2 года назад

    Nice

  • @HemantPandey123
    @HemantPandey123 3 года назад +5

    Using AM>=GM we get (abc)^2 is < = 3 (Applying Am>=Gm on LHS). Hence all bounds found without any lengthy steps.

    • @alanjoelj1591
      @alanjoelj1591 3 года назад +2

      Wrong. AM-GM gives 3abc

    • @HemantPandey123
      @HemantPandey123 3 года назад

      @@alanjoelj1591 But if (abc)^2 is >= 3abc then isn't it contradicts original solution?

    • @alanjoelj1591
      @alanjoelj1591 3 года назад +1

      @@HemantPandey123 Where is the contradiction?

    • @HemantPandey123
      @HemantPandey123 3 года назад

      @@alanjoelj1591 Solution assumes (abc)^2

    • @alanjoelj1591
      @alanjoelj1591 3 года назад +3

      (only) solutions to the equation are (1,2,3) and permutations. (abc)^2 is clearly 36 which is > 3.

  • @anjaneyasharma322
    @anjaneyasharma322 3 года назад +3

    Guessing 1 2 3

  • @beautyofmath6821
    @beautyofmath6821 3 года назад

    Great

  • @SimpMaker
    @SimpMaker 3 года назад

    You wrote 3 when you multiplied by 9 at 3:41

  • @mathsislove197
    @mathsislove197 3 года назад

    I didn’t get anything after 2.00 min, can someone pls explain me how he got the other inequality at 3.35mins

  • @mithutamang3888
    @mithutamang3888 3 года назад +2

    While, b=32 is also a solution? Reply now.

  • @nevomirzaihamadani2648
    @nevomirzaihamadani2648 3 года назад +10

    Man please, i like what u are doing but explain it in a clearer way, speak more distinctly, and maybe present it in a better way if u can

    • @Emre67511
      @Emre67511 7 месяцев назад +3

      Fr I feel like he just writes it down without explaining at all

  • @salarb.4604
    @salarb.4604 10 месяцев назад +2

    Improve your handwriting!😐