A-Level Further Maths B7-01 Argand Diagram: Introducing Loci for Circles |z-a|=r

Поделиться
HTML-код
  • Опубликовано: 2 дек 2024

Комментарии • 21

  • @1973jdmc
    @1973jdmc 4 года назад +10

    You are just FAB

  • @imasha7315
    @imasha7315 3 года назад +10

    You’re amazing sir

  • @rishadtahjeeb3678
    @rishadtahjeeb3678 4 года назад +8

    Thank you for the video.

  • @emmaniac_the_seventeenth6088
    @emmaniac_the_seventeenth6088 Год назад +8

    We all love your videos, they are incredibly useful but PLEASE PLEASE PLEASE create a playlist filing system for them so videos are easy to find. Even just an index where it is split up into some descernable order and all the topics are grouped. I'm that desperate that I'd do it for you...

    • @TLMaths
      @TLMaths  Год назад +16

      They're all organised into playlists on RUclips and organised on my website: www.tlmaths.com/home/a-level-maths/full-a-level

  • @pjanedickensalves9152
    @pjanedickensalves9152 2 года назад +3

    Brilliant, thank you!

  • @Awai_quotes
    @Awai_quotes 3 года назад +3

    I have two questions is this video is the start of argand diagram and that how can i find all the videos for argand diagram in sequence.

    • @TLMaths
      @TLMaths  3 года назад +1

      sites.google.com/view/tlmaths/home/a-level-further-maths/pure/b-complex-numbers/b4-introducing-the-argand-diagram

  • @sid4931
    @sid4931 2 года назад +2

    Is there loci and de moivres theorem in as level first year? or is it in second year?

    • @TLMaths
      @TLMaths  2 года назад +2

      We teach loci in year 1 and de moivres theorem in year 2. Depends on how your teachers decide to run the course, but I would expect that's the most common approach.

  • @Globalz_Haqq
    @Globalz_Haqq 3 года назад +4

    do we need to know this proof?

    • @TLMaths
      @TLMaths  3 года назад +8

      Understand it? Yes.
      Regurgitate it? Probably not.

  • @levito7783
    @levito7783 2 года назад

    Quick question, at 6:26, where did the I go after you found the length of r?

    • @TLMaths
      @TLMaths  2 года назад +2

      i is not included in the length of a complex number.
      If z = a + ib
      then |z| = sqrt(a^2 + b^2)

    • @levito7783
      @levito7783 2 года назад

      @@TLMaths ah that makes sense, thank you

  • @moodymonstrosity1423
    @moodymonstrosity1423 4 года назад +10

    Is this polar coordinates

    • @TLMaths
      @TLMaths  4 года назад +11

      Modulus-argument form is also sometimes called polar form. They are pretty much the same thing except Polar coordinates don't have to have anything to do with complex numbers.

    • @louis4798
      @louis4798 3 года назад +3

      @@TLMaths indeed

  • @stamfly7711
    @stamfly7711 4 года назад +9

    For z = a + bi
    Then by definition
    |z| = r = sqrt(a^2 + b^2)
    Then
    |a+bi| = sqrt(a^2 + b^2)
    But then square both sides and
    a^2 + 2abi - b^2 = a^2 + b^2
    But that means...
    abi = b^2
    And...
    ai = b
    so: z = a + bi -> z = a + ai
    Where is my logic wrong

    • @TLMaths
      @TLMaths  4 года назад +14

      "|a+bi| = sqrt(a^2 + b^2)
      But then square both sides and
      a^2 + 2abi - b^2 = a^2 + b^2"
      Why would squaring |a+bi| produce a^2 + 2abi - b^2?
      |a+bi| = sqrt(a^2 + b^2)
      |a+bi|^2 = a^2 + b^2

    • @nosir1479
      @nosir1479 2 года назад +8

      You were treating |a+bi| algebraically. It is not to be treated as a term, rather as a notation for the length (or modulus) of the complex number, z.