A very tricky Algebra Question || Oxford University Admission Interview

Поделиться
HTML-код
  • Опубликовано: 8 ноя 2024

Комментарии • 11

  • @pietergeerkens6324
    @pietergeerkens6324 2 месяца назад

    Why not first try factoring as:
    ( 2x² + x ± 1 ) ( 3x² - x ∓ 1 ) ?
    The linear coefficients in both are clear, and the problem form strongly suggests that both constants are units; then a little trial and error quickly sets the constants as respectively +1 and -1 giving
    ( 2x² + x + 1 ) ( 3x² - x - 1 ).
    Much simpler than the gyrations you went through.
    It's also important to note that quartic problems are highly likely to be biquadratic, amenable to this approach.

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 2 месяца назад

    {6x^4+6x^4 ➖ }+{x^2+x^2 ➖ }={12x^8+x^4}= 12x^12 3^4x^3^4 1^2^2^3^2^2 1^1^1x^3^1^2 x^3^2 (x ➖ 3x+2).

  • @walterwen2975
    @walterwen2975 2 месяца назад +1

    A very tricky Algebra Question: 6x⁴ + x³ = 2x + 1, x ϵ R; x =?
    x ϵ R; No complex or imaginary value root
    (6x⁴ + x³ - x²) + (x² - 2x) - 1 = (3x² - x)(2x² + x) + [(3x² - x) - (2x² + x)] - 1 = 0
    (2x² + x + 1)(3x² - x - 1) = 0, 2x² + x + 1 = 0, x = (- 1 ± i√7)/4; Rejected, x ϵ R
    3x² - x - 1 = 0, x = (1 ± √13)/6
    Answer check:
    x = (1 ± √13)/6, 3x² - x - 1 = 0: x² = (x + 1)/3
    6x⁴ + x³ = x²(6x² + x) = (1/3)(x + 1)(2x + 2 + x) = (1/3)(x + 1)(3x + 2)
    = (1/3)(3x² + 5x + 2) = (1/3)(x + 1 + 5x + 2) = (1/3)(6x + 3) = 2x + 1; Confirmed
    Final answer:
    x = (1 + √13)/6 or x = (1 - √13)/6

  • @jahansouri-v1k
    @jahansouri-v1k 2 месяца назад +2

    You've wrong at the minute 14. you write (1/X= 2c/-b ......), while I think (2a/-b....) is corrects.

    • @superacademy247
      @superacademy247  2 месяца назад +2

      It's a special type of quadratic formula:ruclips.net/video/mDaXTf60ivo/видео.htmlsi=nWU_d7sJQDtYrkHZ

    • @jahansouri-v1k
      @jahansouri-v1k 2 месяца назад

      @@superacademy247 thank you so much. youre right.

    • @AdrianRif
      @AdrianRif Месяц назад

      I concur with that. He has solved for 1/X rather than X

  • @chinski-kanal-informacyjny
    @chinski-kanal-informacyjny 2 месяца назад +1

    Marne.

  • @竹永雅俊
    @竹永雅俊 2 месяца назад

    先にx≠0を示すべき。