Möbius Transformations Revealed [HD]

Поделиться
HTML-код
  • Опубликовано: 25 янв 2025

Комментарии • 140

  • @timgoppelsroeder121
    @timgoppelsroeder121 4 года назад +83

    The connection between the riemann sphere and mobius transformations just became alot more clear thanks

    • @glitchy9613
      @glitchy9613 2 года назад +3

      They're both related to stereographic projection

  • @AsiaCrasie
    @AsiaCrasie 6 лет назад +241

    cool video, but I still cannot solve my complex analysis problems

    • @neh1234
      @neh1234 4 года назад +27

      What I did understand is that you need a ball, a flashlight and a marker.

    • @billymonday8388
      @billymonday8388 4 года назад +10

      @@neh1234 in what order

    • @cesarvb1452
      @cesarvb1452 4 года назад

      Haha same

    • @boyethewise1728
      @boyethewise1728 3 года назад +1

      as someone who was there...
      *git gud*

    • @CD-yf4wm
      @CD-yf4wm 3 года назад

      lmao same

  • @EyeoftheAbyss
    @EyeoftheAbyss 7 лет назад +49

    10 years old yet the best video on this topic :/

    • @MonsieurDrobot
      @MonsieurDrobot 4 года назад +1

      Simply because it shows how deceptive the globe model is. They have taken a stationary grid and wrapped it around a “globe” and now the majority of sci fi programmed minions gullibly believe it.🙃😹🥂

    • @jinjunliu2401
      @jinjunliu2401 4 года назад +1

      @@MonsieurDrobot Yeah the thing inside the globe isn't a square if you flatten it out, but it's about the projection

    • @MonsieurDrobot
      @MonsieurDrobot 4 года назад +1

      Jin Jun Liu Bingo. It’s hilarious that humans pretend the other side of the known world exists in the opposite direction below them when it’s so obvious that we all exist upright on a stationary GRID of varying elevations!🙃😹👏🥂

  • @MrCavitysChessCorner
    @MrCavitysChessCorner 12 лет назад +23

    Insanely awesome. Projects like these are why I get up in the morning. I'm getting trained (lectured thrice a week) to work in a hyperbolic geometry lab. Needless to say I'm excited to do this kind of work.
    Geodesics baby!!!!!

  • @triton62674
    @triton62674 5 лет назад +15

    Simply amazing, that sphere visualisation blew me away.

  • @chrisvolk4730
    @chrisvolk4730 9 лет назад +35

    Beautiful, simple and elegant. Thank you.

  • @jeppejabob
    @jeppejabob 2 года назад +1

    A beautiful way to connect the Riemann sphere to Möbius trasformation. Very intuitive.

  • @kockarthur7976
    @kockarthur7976 6 лет назад +18

    A rotation of the Riemann sphere about a horizontal axis does not represent an inversion of the complex plane. It represents an inversion and a rotation (combined). The true sphere representation of an inversion corresponds to reaching through the sphere, pinching the other side, and pulling it through, i.e. literally turning it inside out (inverting it).

    • @RatMansVlog
      @RatMansVlog 5 лет назад +8

      There are two types of inversion. Inversion 1/zbar and complex inversion 1/z. I think you're referring to the first, but complex inversion is what they're illustrating

  • @Cyberautist
    @Cyberautist 3 года назад +1

    I saw these inversions for like 5 years in some videos about complex math. I never understood what they actually doing and why. Even in videos about the riemann-hypothesis these inversions were used, but I never saw or understand, that these graphics were meant to be understood as inversions; or what inversion on the complex plain could possible mean. Thank you so much for making that clear to me.

  • @kadamitas
    @kadamitas 2 года назад +3

    Morbius Transformations Revealed [HD]

  • @MoreCompute
    @MoreCompute 4 месяца назад

    Wow! What an elegant video

  • @bluesticker23
    @bluesticker23 2 года назад

    THANKS FOR RECOMMENDING THIS TO ME AFTER I GOT STUCK AFTER TRYING TO SEARCH IT
    Thank you so much.

  • @yb3604
    @yb3604 6 месяцев назад

    that was absolutely lovely!!!

  • @shashwatbhatnagar659
    @shashwatbhatnagar659 2 года назад

    I am really speechless. What a wonderful educational content and the way you explained it is totally amazing

  • @aNameOfSomeSortOrOther
    @aNameOfSomeSortOrOther Год назад

    Got my complex analysis final coming up, thanks :)

  • @bigweather4278
    @bigweather4278 2 года назад +10

    morbin time

  • @jacifafernandes1418
    @jacifafernandes1418 2 года назад

    Wow ! This was really helpful. Thank you so much.

  • @Tadesan
    @Tadesan 7 лет назад +2

    Pure gold! Bravo!

  • @PROcrastiDRIVESVofficial
    @PROcrastiDRIVESVofficial 9 лет назад +6

    Awesome video, thanks! It's amazing how simple it becomes.

  • @MFarZa
    @MFarZa Месяц назад

    amazing , Thanks !

  • @kushim6813
    @kushim6813 8 месяцев назад

    Amazing video❤❤

  • @RayFloresdeNL
    @RayFloresdeNL 5 лет назад

    The most beautiful video on RUclips.

  • @chayanhalder2690
    @chayanhalder2690 2 года назад

    Thanks for this beautiful explanation

    • @TheColdrush22
      @TheColdrush22 2 года назад

      He reposted it from the actual creator. Original: ruclips.net/video/JX3VmDgiFnY/видео.html

  • @Lhirstev
    @Lhirstev Год назад

    This is one of the first videos I have ever seen on RUclips. I am pretty sure that I remember I had looked this up under recently uploaded on RUclips when my teacher in high school had shown me what RUclips was. Back then, there was not that many videos on RUclips and I think I had watched every single video uploaded around the same time as I saw this? But I had seen the original video by whomever had uploaded that in September of 2005. Lol. I bet against RUclips Gaining Success.. :/ I remember talking about it in class.

  • @blahmonster1234
    @blahmonster1234 10 лет назад +4

    Such a great video.

  • @Petrov3434
    @Petrov3434 4 года назад

    Astonishingly well done -- congratulations !!!

    • @TheColdrush22
      @TheColdrush22 2 года назад

      Not his creation. Read the description. Original: ruclips.net/video/JX3VmDgiFnY/видео.html

  • @nickjiang6451
    @nickjiang6451 4 года назад

    cant believe this is a video made 10 yrs ago. eggcellent video

  • @gochgo
    @gochgo 5 месяцев назад

    if i'm being honest, a light that travels to infinity in an infinite plane just sounds unsettling to me

  • @jean-baptiste6479
    @jean-baptiste6479 28 дней назад

    Beautiful

  • @onresonance
    @onresonance 12 лет назад

    terence tao mentioned this video in his 2009 induction ceremony speech, which is why i came here. i like how simply this is explained.

  • @orktv4673
    @orktv4673 3 года назад +1

    Wish there was a video like this showcasing how the conjugacy classes preserve certain fixed points. From what I understand this arises due to a specific combination of translation and rotation of the Riemann sphere.

  • @makisekuurisuu
    @makisekuurisuu 2 года назад

    This is sooo cool!! ♡

  • @bsharpmajorscale
    @bsharpmajorscale 3 года назад +1

    When it inverts, the empty space almost looks like a silhouette of Tweety Bird. :P

  • @okita1
    @okita1 13 лет назад +1

    love it man, thanks for sharing.

  • @alessandramariagavriloiu1605
    @alessandramariagavriloiu1605 5 лет назад +2

    I'm from MathPath! Cool video

  • @placeholdername3907
    @placeholdername3907 2 года назад +3

    MORBIUS

  • @AlessandroZir
    @AlessandroZir Год назад

    thanks! simple and enlightening;

  • @PeanutLikeButter
    @PeanutLikeButter 11 лет назад +1

    So cool, thanks for the vid :)

  • @theboombody
    @theboombody Год назад

    Very helpful to see. Because this kind of stuff is hard to understand from a book with just proofs and notation.

  • @arthursgarage6550
    @arthursgarage6550 3 месяца назад

    Learning these for smith charts, neat

  • @IsraelRamirezNunez
    @IsraelRamirezNunez 6 месяцев назад

    beauty at its peak

  • @paulfun92
    @paulfun92 4 года назад

    Wow! Mind-blowing!

  • @espero6629
    @espero6629 6 лет назад

    Amazing Video

  • @JorisMKW
    @JorisMKW 3 года назад +2

    Beautiful video! However, I think the part about scaling is incorrect, and should be replaced by actually scaling the sphere and keeping its south pole constrained to the plane. Otherwise you can not visualize Möbius transformations like z -> z/a where |a|

  • @거미남자_spidy
    @거미남자_spidy 4 года назад +2

    Complex analysis is great study.
    and Riemann had made a gretest achievement!!

  • @adastraperlana
    @adastraperlana 9 лет назад

    really great video! ty!!

  • @seayellow5834
    @seayellow5834 3 года назад

    So great!!!!

  • @pranavprankstergangster
    @pranavprankstergangster 11 месяцев назад +2

    Morbius 😥

  • @kaibroeking9968
    @kaibroeking9968 6 лет назад +1

    The only qualm I have with this version of the video is someone who cannot say "Möbius" ruining the video by reading the captions of the original video aloud, thus ruining the effect of the beautifully fitting music.

  • @sntk1
    @sntk1 Год назад

    Notice that the colors are invariant under the transformations depicted.

  • @speckengeljohann6135
    @speckengeljohann6135 Год назад

    does this apply to all elliptic, parabolic and hyperbolic cases?

  • @NattyDread91
    @NattyDread91 12 лет назад

    This is beautiful

  • @BatterflyHigh
    @BatterflyHigh 5 лет назад +1

    I am SCREAMING this is so cool

  • @sajinvincent8328
    @sajinvincent8328 4 года назад

    Awesome...

  • @frankreashore
    @frankreashore 3 года назад

    Amazing

  • @descheleschilder401
    @descheleschilder401 7 лет назад +2

    First of all: a very enlightening video! I love it. Especially the inversion of the plane, where infinity comes to lay under the sphere with the little light and the points of the square before the rotation of the sphere are send to infinity. One question though. Is the projection of the square (by the light) around the time of 2 minutes and 14 seconds not different from a square but already part of the projection if the spere is rotated around a horizontal axis, so the square is not a square anymore but already a part of the plane inversion? I guess it's not the same figure on the inside, otherwise, the projection by the light would show the beginning of an inversion. Another question. Can we fill up the whole sphere with colors, (the light can shine through them, so the whole infinite plane is colored too), and show how the transformations come about by looking at how the colors change? Rotations of the sphere rotates the colors, moving the sphere around moves the colors all in the same way, lifting the sphere up will enlarge the distances between colors and finally rotating the sphere around any horizontal axis will bring the colors at infinity below the sphere and send the colors under the sphere to infinity. I'm not sure how you must draw the black lines in this case. Any suggestions? Of course, the video is much clearer in this respect, but I was just wondering! And again (I've seen this video already a long time ago and was really impressed by it! Even now I wanted to see it again, with the ensuing thoughts): GREAT VIDEO which shows much more than all the math symbols that go along with it.

  • @kristoferkrus
    @kristoferkrus Год назад

    Very nice! I really appreciate it when you can increase the intuition of a complex subject with a simple visualization like this.
    But what about chained Möbius transformations? There is a projective matrix representation of the Möbius transformation that can be used to combine several Möbius transformations performed one after another into a single Möbius transformation, simply by multiplying the matrices corresponding to the individual Möbius transformations with each other. Since that combined Möbius transformation also corresponds to a transformation of the unit sphere used in this animation, is there also a corresponding, simple way to calculate that transformation from the individual transformations of the sphere corresponding to the individual, chained Möbius transformations?

  • @333666666
    @333666666 12 лет назад +1

    This is like salvia, without the humiliating RUclips videos after.

  • @__Entropy__
    @__Entropy__ 4 года назад

    Look up Stereographic Projections, the mathematics of maps which project a sphere onto a plane.

  • @notgoodatmathmmm6185
    @notgoodatmathmmm6185 4 года назад

    wtf how cool is that

  • @ThunderShock68
    @ThunderShock68 5 лет назад

    How is 2c) going everyone

  • @00pacific
    @00pacific 8 лет назад

    Is rotation in Z-direction possible ? Suppose Z- is into the screen.

  • @Taqu3
    @Taqu3 4 года назад

    Awesome! Do mobius transformations preserve the shape of regular polygons ?

    • @astroceleste292
      @astroceleste292 3 года назад

      no as u can see the color square becomes weird

  • @emlmm88
    @emlmm88 6 лет назад

    So right angles stay true. Does that imply that möbius transformations are conformal in general?

  • @Debanil12
    @Debanil12 8 лет назад +2

    it has a drawback.... in this way we can not visualize mobius transformation as a naturally induced map from sphere to sphere.......... because sphere is displaced in case of translation and dilation.......

    • @wiebe-martenwijnja2286
      @wiebe-martenwijnja2286 8 лет назад

      The 'infinite plane' used in Geometry is of course a sphere with an infinitely large radius, so the naturally induced spheresphere mapping property still holds true.

    • @Debanil12
      @Debanil12 8 лет назад

      you completely missed my point...... I'm well aware of stereographic projection.......... for an example the translation of real plane will induce different kind of map from sphere to sphere as the infinite point is held fixed..... the map can be viewed as a directed flow along circles passing through the infinite point....... hope u'll understand cause I won't argue anymore......

    • @RatMansVlog
      @RatMansVlog 5 лет назад

      You're right

    • @IsomerSoma
      @IsomerSoma 4 года назад

      I don't disagree necessarily, but ..... can ...... you ..... calm ..... down ..... with .... the ..... misuse .... of ..... dots?

    • @Debanil12
      @Debanil12 4 года назад

      @@IsomerSoma It's over 4 years now and I am calm enough. Bdw I typed from laptop and I pressed "." to my heart's content.

  • @2121DHAVAL
    @2121DHAVAL 12 лет назад

    awesome

  • @abhaymathur9332
    @abhaymathur9332 7 лет назад

    nice video

  • @debjitmandal3379
    @debjitmandal3379 11 лет назад

    Nice video.....I think, it is created in 'BLENDER'....right?

  • @AK56fire
    @AK56fire 3 года назад

    Which software did you use to make this..?

    • @swearTV
      @swearTV 3 года назад

      I also wanna know. I'm thinking it's POV-ray

    • @TheColdrush22
      @TheColdrush22 2 года назад

      He didn’t make it. It’s not his original content. The creator: ruclips.net/video/JX3VmDgiFnY/видео.html Read the description for all info.

  • @kaanarik8592
    @kaanarik8592 5 лет назад

    Nihal hocam izledik ama ben konuyu yine anlayamadım.

  • @TheRevAlokSingh
    @TheRevAlokSingh 6 месяцев назад

    the music is distracting, too staccato and cheery

  • @peterpro9284
    @peterpro9284 10 лет назад

    How did you guys figure this out?

  • @sukursukur3617
    @sukursukur3617 4 года назад

    Can we draw sinx function on x^2 curve or generally on any curve?

    • @jaycee9153
      @jaycee9153 2 года назад

      what do you mean?

    • @sukursukur3617
      @sukursukur3617 2 года назад

      @@jaycee9153 ımagine a periodic function(sinx, cosx or a square step function). Mean of these functions are on x=0 axis.
      Imagine mean of these periodic functions on a function like y=x^2 or on y=e^(-x^2) or on any other big wave-length periodic function.
      How can we build such a function?

  • @luisalejandrohernandezmaya254
    @luisalejandrohernandezmaya254 5 лет назад

    Translations of sphere = 2 real degree of freedom.
    Up/down translations of sphere to make dilations=1 real degree of freedom.
    Rotations of sphere = 3 real degree of freedom.
    Total= 6 real degree of freedom.
    BUT a Mobius transformation is defined by 4 complex numbers = 8 real degree of freedom.
    The Mobius transformations you showed must be only a subgroup of all Mobius transformations, I think.

    • @ChristopherKing288
      @ChristopherKing288 5 лет назад +1

      The 4 complex numbers defining a mobius transform aren't unique, so it doesn't utilize all 8 dimensions.

    • @luisalejandrohernandezmaya254
      @luisalejandrohernandezmaya254 5 лет назад +1

      @@ChristopherKing288 ¡Exacto! Yo llegué a la misma conclusión haciendo un cambio de base. En lugar de que sean 8 dimensiones reales tomé cuatro dimensiones complejas tomando cuatro matrices (no recuerdo si eran las de Pauli o i veces las de Pauli, o algo parecido) y una de ellas, que es, de hecho, creo que la matriz identidad, no contribuye a la representación matricial de una transformación de Mobius. Así que la acción de una de esas matrices no contribuye a la transformación de Mobiusv. It's like a quotient subgroup, i think. ¡Of course! Las matrices identidad conmutan con cualquier matriz, so the "clases laterales izquierda y derecha" son la misma. Where I come, people is used to say. Cámara carnal, ahora pásame tu número, princhecha mosa. :kiss:

    • @luisalejandrohernandezmaya254
      @luisalejandrohernandezmaya254 5 лет назад

      ¡Eh, hermano! No te pases de verga con una dama. Sorry, Samantha.

    • @ChristopherKing288
      @ChristopherKing288 5 лет назад

      @@luisalejandrohernandezmaya254 I don't speak Spanish, but "sin problema" I'm guessing.

    • @albertlau867
      @albertlau867 3 года назад

      Mobius transformation has only 6 degree of freedom. since multiplying any complex k (2 degree of freedom) to a,b,c,d does not change the transformation. 8-2=6

  • @chewhammer2213
    @chewhammer2213 Год назад

    I want to see this is 4d

  • @KigenEkeson
    @KigenEkeson 12 лет назад

    Sweet!

  • @gopinathan2095
    @gopinathan2095 2 года назад

    Wow...

  • @purplegoat2500
    @purplegoat2500 13 лет назад +3

    man I have no idea what just happened.. awesome tho

  • @llewgibson
    @llewgibson 7 лет назад

    I viewed your channel mate, really love the content. Liked straight away, We should connect!

    • @timgoppelsroeder121
      @timgoppelsroeder121 4 года назад

      Body building and mobius transformations will be a very interesting collab...

  • @CodeNamePlaylistYT
    @CodeNamePlaylistYT 2 года назад

    Real ASMR

  • @gyro5d
    @gyro5d 11 лет назад

    Was that fractals or a cartoon head?

    • @emlmm88
      @emlmm88 6 лет назад

      Nonconcensusical Rotating along the Z axis produces a rotation in the plane.

  • @gmangladman
    @gmangladman 6 лет назад +2

    i had an intuitive idea about this but I do not even know where this came from...I am not a fundamental mathematician. Maybe knowledge is a wave the collides with us

  • @pendalink
    @pendalink 7 лет назад

    awesomee

  • @pendergastj
    @pendergastj 6 лет назад

    divide p by its square magnitude ;)

  • @Dyslexic-Artist-Theory-on-Time
    @Dyslexic-Artist-Theory-on-Time 11 лет назад

    Great video! Would it be possible to use your graphics in one of my videos? I would place a link to your original video!

  • @cheems0
    @cheems0 2 года назад +4

    ıt's morbin tıme

  • @NumbToons
    @NumbToons Год назад

    2:08

  • @wilsoncolorines1489
    @wilsoncolorines1489 5 лет назад

    I like more Moebius for Wilson Colorines

  • @noyonrongon6292
    @noyonrongon6292 5 лет назад

    tereographic Projection

  • @sukursukur3617
    @sukursukur3617 3 года назад

    Wooow wooooowwww

  • @aashuthoshsharma715
    @aashuthoshsharma715 2 года назад

    wat dis?

  • @Schmoopy0423
    @Schmoopy0423 12 лет назад +1

    Cool vid.btw im on my moms account.

  • @aarushprasad4493
    @aarushprasad4493 4 года назад +1

    Title of this video: Möbius Transformations Revealed [HD]
    Quality of this video: 720p
    Date of this video: 10 years ago
    My response to these stats: Don't tell me you call this [HD], son. You must be a grandpa by now who fought in the military and gives his grandchildren ice cream.
    My friend standing next to me: u got dem big brains man (>-_-)>

  • @hat_kid6224
    @hat_kid6224 6 лет назад

    Noice

  • @Dan0magico
    @Dan0magico 6 лет назад

    lel

  • @GrimPride
    @GrimPride 6 лет назад

    i'm the thousandth like :P

  • @nameneedstobeloooooooooooong
    @nameneedstobeloooooooooooong 5 месяцев назад +1

    awesome