Trapping a Beam of Light In a Loop Of Fiber Optic Cable

Поделиться
HTML-код
  • Опубликовано: 24 авг 2023
  • You can get 21% off BEAR here: foreo.se/kyrm
    A few published studies talking about microcurrent devices:
    www.sciencedirect.com/science...
    www.ncbi.nlm.nih.gov/pmc/arti...
    Wound care with electrical stimulation:
    www.mdpi.com/2227-9032/2/4/445
    onlinelibrary.wiley.com/doi/1...
    www.ncbi.nlm.nih.gov/pmc/arti...
    www.ncbi.nlm.nih.gov/pmc/arti...
    In this video I show you how optical fibers can trap light using total internal reflection
    Shop the Action Lab Science Gear here: theactionlab.com/
    Checkout my experiment book: amzn.to/2Wf07x1
    Twitter: / theactionlabman
    Facebook: / theactionlabofficial
    Instagram: / therealactionlab
    Snap: / 426771378288640
    Tik Tok: / theactionlabshorts
  • НаукаНаука

Комментарии • 1 тыс.

  • @qg786
    @qg786 8 месяцев назад +1566

    I'm a telecoms engineer that installs fibre and we use red lights to find faults in our telecoms network. The light once shone through can be seen through the fibre at a few kilometers! 👌🏽

    • @userunfriendly9304
      @userunfriendly9304 8 месяцев назад +92

      I love that fiber optics can use different wavelengths. I hope that our technology becomes so precise that billions of wavelengths can be used on a single line.

    • @TiSapph
      @TiSapph 8 месяцев назад

      ​@@userunfriendly9304 A single mode fiber usually has an operating range of a couple hundred nanometres already. If the wavelength is too low, higher modes are allowed (limits data rates) and if the wavelength is too large, it won't be guided anymore. You can get "endlessly singlemode" photonic crystal fibers, which have a very wide operating range, but they are stupid expensive.
      The bigger issue is that glass absorbs the light. You get the lowest absorption at 1310nm and 1550nm, so for long distance you are pretty much limited to those two bands. But thankfully that's more than enough for data transfer. Technically a single wavelength source is enough for insane data speeds, however it's more practical use multiple different wavelengths that are close to 1310 or 1550. With dense wavelength division multiplexing we can currently we can squeeze around 100 channels with 100Gbit/s each into that wavelength range. If you increase the number of channels your maximum data rate per channel will go down as the channels will start to overlap

    • @xXMaDGaMeR
      @xXMaDGaMeR 8 месяцев назад +4

      wow super interesting!

    • @zorilaz
      @zorilaz 8 месяцев назад +9

      What the heck is a fiber engineer?

    • @drstefankrank
      @drstefankrank 8 месяцев назад +71

      @@userunfriendly9304 Currently 64 wavelengths are common. It's hard to separate them if the wavelengths are too narrow to each other. You also can't spread too far out, because the reflective index varies with wavelength for the used glass inside.
      Still impressive. 25 Gbit/s per second on a single wavelength is 1.6TBit/s on a single strand of fibre. One fibre cable can have thousands of strands without getting too bulky.

  • @GeoffryGifari
    @GeoffryGifari 8 месяцев назад +911

    I thought the reason why we shouldn't bend the fiber optic cable too much is because the glass inside would snap

    • @TheActionLab
      @TheActionLab  8 месяцев назад +453

      that too!

    • @mike1024.
      @mike1024. 8 месяцев назад +139

      I was actually amazed that the glass didn't snap, but I guess it was much thinner than other fiber-optic cables I've encountered in the past.

    • @NavinF
      @NavinF 8 месяцев назад +118

      @@mike1024. Modern fiber is very resilient. I've slammed cabinet doors on them and seen no loss in signal. I'm sure you lose a little, but it's too small for cheap 10gbps optics to measure.

    • @mike1024.
      @mike1024. 8 месяцев назад +18

      @@NavinF Good to know! I haven't looked at a fiberoptic cable in several years.

    • @clairecelestin8437
      @clairecelestin8437 8 месяцев назад +130

      @@NavinFThe phrase "cheap 10gbps optics" sent me into a time warp and made me realize that we live in the future

  • @calestolle3251
    @calestolle3251 8 месяцев назад +226

    I love how this channel brings a sense of whimsy to science. Thank you for your material!

    • @weblure
      @weblure 6 месяцев назад +5

      The pseudoscience and science fiction in this channel is very whimsical indeed. The scam product sponsorship was the cherry on top, lol

    • @abdou.the.heretic
      @abdou.the.heretic 5 месяцев назад

      ​@@weblureSponsorblock. It made youtube watchable again instead of endless pitches for Nord Shark Shadows Mafia Legends

  • @BriShep123
    @BriShep123 8 месяцев назад +177

    Surprising that you didn't mention Lene Hau at all. In 2001 she became the first person to stop light completely, using a Bose Einstein Condensate.

    • @michelletadmor8642
      @michelletadmor8642 8 месяцев назад +18

      stop light from what?

    • @-never-gonna-give-you-up-
      @-never-gonna-give-you-up- 8 месяцев назад +50

      I can stop light completely too... using a light switch....

    • @ElijahPerrin80
      @ElijahPerrin80 8 месяцев назад +2

      Thank you, fascinating experiment.

    • @vaisakhkm783
      @vaisakhkm783 8 месяцев назад

      @@michelletadmor8642 not just stopping.. she made it go at 17 m/s...

    • @odbo_One
      @odbo_One 8 месяцев назад +10

      Did she close her eyes?

  • @SIK_Mephisto
    @SIK_Mephisto 8 месяцев назад +93

    The speed of light can be slowed down depending on the medium it travels through. This may be a fun concept to look into to further explore light confinement.

    • @drmaheshkumar4913
      @drmaheshkumar4913 8 месяцев назад +8

      Actually refractive index of a medium is nothing but the ratio of speed.
      Speed of light in air is about 3*10^9 m/sec and in water its speed is 2*10^9m/sec
      if we divide the speed of light in air by that in water we actually just get the refractive index of water.
      Diamond has one of the highest refractive index of 2.4.
      Hence although it slows down the speed of light by 2.4 times ,the speed is still way to high and hence does not make a difference.

    • @Milesco
      @Milesco 8 месяцев назад +4

      I like to explore a little light confinement now and then. 🔗 🔒 😉

    • @critopadolf5534
      @critopadolf5534 8 месяцев назад

      But won’t a slower speed of light mean more energy lost per meter traveled?

    • @beardymcbeardface69
      @beardymcbeardface69 8 месяцев назад +1

      With respect to electrical conductors, one thing I found very interesting was that the speed of electrons of AC signals in conductors, has far more to do with what the insulation material is, than what the electrical conductor material is. This phenomena becomes more and more pronounced as the AC signal frequency increases.

    • @cristianjuarez1086
      @cristianjuarez1086 8 месяцев назад +1

      You can't slow down the speed of light because its constant. You can only make it go a longer path

  • @kilroy987
    @kilroy987 8 месяцев назад +104

    The trouble is light is invisible until it illuminates something visible, and once that's true, light has left the system because it's dispersing everywhere.
    So even if you successfully trap light in a perfectly reflecting fiber optic cable, it's such a tiny amount length wise that it would require an extremely slow motion camera to witness the exiting light illuminating anything.

    • @vaakdemandante8772
      @vaakdemandante8772 8 месяцев назад +1

      light is information/energy and the fiber optic cable does not have much capacity for storing that energy or to put it in other way, its ability to decrease entropy is limited.

    • @geemy9675
      @geemy9675 8 месяцев назад

      @@vaakdemandante8772 damn...I hoped I could replace my ev batttery with a small loop of optic fiber 😀 ok no problem I'll just replace it with electrons in a loop of superconductor 👍superconductor can actually fix the decay of the signal, because there is actually ZERO resistance. but there is a limit for the amps you can pump before the magnetic field breaks the superconducting effect.
      EDIT funny you can actually store energy as magnetic field in a superconducting coild, but its very low density BUT extremely fast charge/discharge (under a ms)

    • @ThunderCat19D
      @ThunderCat19D 8 месяцев назад +2

      So a sort of water isn't wet water makes things wet. Light isn't light it illuminates things.

    • @mgancarzjr
      @mgancarzjr 8 месяцев назад

      ​@@ThunderCat19Dit's an interesting way to exchange energy from one piece of matter to another
      An excited electron emits a photon which then excites another electron which emits another photon to get back to ground state, etc.

    • @rearmisser
      @rearmisser 7 месяцев назад

      extremely is an understatement 😂

  • @WouterVerbruggen
    @WouterVerbruggen 8 месяцев назад +139

    The thickness of a fible optic cable core depends on what kind it is. If it is multimode, it is typically 50 microns which is around the thinkness of a human hair. Single mode cables are around 9 microns, a 5th (not a 10th) of a human hair. The closup you show is a thicker multimode one, the one you play with a single mode.

    • @AKAtheA
      @AKAtheA 8 месяцев назад +10

      except that's just the core, the fiber also has cladding, bringing the OD to 125 microns for both multi and single mode...

    • @WouterVerbruggen
      @WouterVerbruggen 8 месяцев назад +7

      @@AKAtheA yes, like I specify in the first sentence XD

    • @ker6349
      @ker6349 8 месяцев назад +3

      Bro stopped reading 7 words in lmao

    • @the_ALchannel
      @the_ALchannel 8 месяцев назад +1

      Is that why at 3:05 light is in two bright spots on the output of the cable? Is that a cross-section of the intensity of the propagating mode?

    • @ultimateearrapechannel31
      @ultimateearrapechannel31 8 месяцев назад

      @@WouterVerbruggennooit gedacht hier een nederlander tegen te komen

  • @DepthsOfOblivion666
    @DepthsOfOblivion666 8 месяцев назад +25

    You are the science teacher that I needed in high school. Love your videos!

    • @prestonburton8504
      @prestonburton8504 6 месяцев назад

      Amen - Amen! and collage as well- he is a perfect model for how teaching should be approached.

  • @kalvincochran9505
    @kalvincochran9505 8 месяцев назад +27

    You’ve taught me so much physics and inspired me to take a physics class over the summer which has expanded my knowledge so much and I understand your videos so much better and I understand my other studies better because it’s changed the way I think about things

  • @jeremyortiz2927
    @jeremyortiz2927 8 месяцев назад +50

    My father developed a method to splice fiber-optic cables back in the early 80s when he was in the Air Force. Prior to that, full replacement was the only option. Because it was while on duty, he could not patent the process. However, he did receive a $10k "Ideas" award for his efforts.

    • @DeezNutz-ce5se
      @DeezNutz-ce5se 8 месяцев назад +6

      Should've quit his job and patent. Would been a millionaire

    • @awgunner429
      @awgunner429 8 месяцев назад +3

      @@DeezNutz-ce5se you can't just quit the military.

    • @user-uc2qy1ff2z
      @user-uc2qy1ff2z 8 месяцев назад

      ​@@awgunner429you can hide your invention and patent it later.

    • @IntegerOfDoom
      @IntegerOfDoom 8 месяцев назад

      You confused "can't" with "shouldn't" a mistake I see far too many make.@@awgunner429

    • @marcusaurelius2013
      @marcusaurelius2013 8 месяцев назад +1

      @@awgunner429 Then he should've kept the idea to himself until he was out of the military.

  • @fuzzylon
    @fuzzylon 8 месяцев назад +7

    Great video !
    I've worked with fibre cables for many years, but not seen some of the things you demonstrated today before.

  • @alexnather7614
    @alexnather7614 8 месяцев назад +78

    Action lab never fails to entertain and "enlighten" me 😀

    • @frenesisseredsmoker1831
      @frenesisseredsmoker1831 8 месяцев назад +6

      This pun brightened my day

    • @The_BananamanMC
      @The_BananamanMC 8 месяцев назад +2

      If i had a "sun" he would love that pun
      Edit: ooh a rhyme

    • @Vordikk
      @Vordikk Месяц назад

      @@frenesisseredsmoker1831 sometimes im seeing bright light sparks with closed eyes when sleeping. I thought that's a bug, but seemingly this is Action Lab turns on his 100000000 lumen flashlight on other side of the planet.

  • @flamencoprof
    @flamencoprof 8 месяцев назад +10

    Great demo of the general principles of fibre optics, and the behaviour of optical fibres. I enjoy this channel and hope it has lots of younger followers.

  • @gonun69
    @gonun69 8 месяцев назад +73

    During the Apollo missions they left reflectors on the moon. They then shot a laser beam from earth at it to measure the distance to the moon very accurately. What they have effectively done is storing a beam of light for about 2.5 seconds.

    • @nkronert
      @nkronert 8 месяцев назад +9

      A long time ago someone actually suggested that it would be possible to store up to a gigabit of information by modulating the laser beam shot at the Moon, decoding the returned light pulses and resending them immediately. A gigabit was a lot of information at the time😊

    • @sitproperlywhilewatchingph423
      @sitproperlywhilewatchingph423 8 месяцев назад +1

      ​@@nkronertso storing the info by sending it back and forth ?

    • @nkronert
      @nkronert 8 месяцев назад

      @@sitproperlywhilewatchingph423 you send it to the retro reflector on the moon and catch the returning signal, process it and send it out to the moon again.

    • @person8064
      @person8064 7 месяцев назад +1

      ​@@nkronert that's the principal behind harder drives; they use wifi signals bouncing around the atmosphere to store information

    • @nkronert
      @nkronert 7 месяцев назад

      @@person8064 can you elaborate on that please? I've not heard of this before.

  • @ten-tonnetongue
    @ten-tonnetongue 8 месяцев назад +2

    YOUR PRODUCTION QUALITY HAS INCREASED AND I LOVE IT.

  • @chadbertrand1460
    @chadbertrand1460 8 месяцев назад +13

    Just a thought that while light is entering the bend in the closed loop, it is also escaping through the same bend. You would need some kind of 1-way photon valve to do a proper test.

    • @u1zha
      @u1zha 8 месяцев назад +5

      Yeah, holding it in the flashlight for prolonged time achieves nothing extra.
      The moment when bend is straightened again, that's when some photons will be caught bouncing inside, as they don't manage to escape. But that's such a tiny amount, can't be expected to be noticeable to human eye in these tests _even if_ it was not subject to absorption.

  • @wealthyblackman2655
    @wealthyblackman2655 8 месяцев назад +13

    Always dreamed of "light trapping" but my theory utilized two way mirrors in a tetrahedron type of ball with multiple surfaces reflecting at many different angles. I do like the fiber cable experiment though AND you should visit Lucent Technologies in Georgia to get a longer fiber optic cable.

  • @valiantwarrior4517
    @valiantwarrior4517 8 месяцев назад +2

    Thanks for the great explanation. I’ve always found fiber optics fascinating.

  • @Bigshooterist
    @Bigshooterist 8 месяцев назад

    Your topic matter is beyond amazing. I find it makes me ponder things I'd never even considered.

  • @LordElijah
    @LordElijah 8 месяцев назад +4

    I had the exact question of can we capture light, thanks for such an awesome video!

  • @MarkBarrett
    @MarkBarrett 8 месяцев назад +6

    Holy crap! I've been theorizing for a few years about sending light through a coil, in a loop.
    This method could actually do it!

    • @MrT------5743
      @MrT------5743 8 месяцев назад +3

      You missed inventing this technology by about half a century. The first fiber optic cable was invented in the 1950's.

  • @talayoki6989
    @talayoki6989 8 месяцев назад +3

    You explained this concept better than my physics teacher did when I went to school.

    • @dvoiceotruth
      @dvoiceotruth 8 месяцев назад

      RIP physics teacher

    • @talayoki6989
      @talayoki6989 8 месяцев назад +1

      @@dvoiceotruth first of all, she is alive and her child is younger than me and second, the equipment we had for experiments was made in USSR. I graduated from gymnasium 4 years ago. This concludes that our schools are still broke.

  • @goodness6664
    @goodness6664 8 месяцев назад

    Love what ur doing with changing the thumbnail to see the results vs the original

  • @brfisher1123
    @brfisher1123 8 месяцев назад +28

    I know something similar to this happens with different kinds of light/electromagnetic waves such as the case with of the waveguide in a microwave oven that guides microwaves into the cooking chamber as well as the ionosphere that enables the long-distance propagation on longwave radio waves such as the ones used in A.M. radios.

  • @spudhead169
    @spudhead169 8 месяцев назад +7

    Light changes speed through different mediums. Not sure if this would even be possible but a hypothetical material that slows down light to a literal crawl. Then you could "capture" some light from one place and let it out somewhere else.

    • @BriShep123
      @BriShep123 8 месяцев назад +4

      Isn't that exactly what Lene Hau did?

    • @spudhead169
      @spudhead169 8 месяцев назад +3

      @@BriShep123 No clue, that's a name I've never heard before, but you've given me something interesting to research.

  • @mikepembo8297
    @mikepembo8297 8 месяцев назад +1

    Im a network consultant so much of this is Knowledge ive already got, but wow, I never thought to test an SFP with a multimeter! Very good idea!

  • @labibbidabibbadum
    @labibbidabibbadum 5 месяцев назад +1

    I was hiding behind the couch when you shot that powerful torch into the fibre .
    I was worried you would send the beam both ways at once and make a particle accelerator, and when the beams met they would produce a black hole and obliterate the earth.
    But you must have got the angle just perfect to only send it one way.
    Well done... talk about phew!

  • @DanielScholtus
    @DanielScholtus 8 месяцев назад +3

    If the angle required is not too strict, you could design a Y connector that takes light from 2 sources into one outlet, then just loop that outlet into one of the intakes. That way you have one intake free to kick it off and any light will just go on and loop, without the need to connect/disconnect anything.

  • @h7opolo
    @h7opolo 8 месяцев назад +7

    4:30 makes me think you might be able to see a faint glow from the coil of fiber if you look at it in a completely dark room.

    • @TiSapph
      @TiSapph 8 месяцев назад +2

      You can, though those thick jacket fibers block it pretty well. With the thinner 900um jacket fibers it's much more visible.

  • @tayserbinjafor1569
    @tayserbinjafor1569 8 месяцев назад +1

    That's very important to have a best idea of total internal reflection.

  • @BakersTuts
    @BakersTuts 8 месяцев назад +2

    What if the fiber core had some sort of shallow y-fitting where you inject it from the branch, and then the main line is the actual loop?

  • @Jagdishtemkar1
    @Jagdishtemkar1 8 месяцев назад +21

    The speed of light is just unfathomable 😮. Even after so many reflections, and a long fibre cable, the pass through after he connects the laser still seems instantaneous.

    • @Welgeldiguniekalias
      @Welgeldiguniekalias 8 месяцев назад +3

      Speed itself is unfathomable, since motion is always relative to your point of reference. If the universe is expanding at the speed of light, and you were to pick one point on the edge of the universe and then move towards it at the speed of light, keeping the distance between yourself and the point of reference constant, at which speed are you moving away from the opposite side?
      Physics hurts my brain. I'm glad I'm just a salesman who needn't worry about such matters.

    • @katrinabryce
      @katrinabryce 8 месяцев назад +4

      And in computer therms it is actually really slow, 30cm/ns. In a 10Gb cable, the individual pulses of data are spaced 3cm apart as they move down the cable.

    • @dugebuwembo
      @dugebuwembo 8 месяцев назад +5

      Light can travel 7.48 times around the entire earth in a loop in 1 second.

    • @MeppyMan
      @MeppyMan 8 месяцев назад +6

      And yet it’s so slow when you start to zoom out to astronomical scales.

    • @SumitPalTube
      @SumitPalTube 8 месяцев назад

      Yes, it takes millions and millions of years to reach from the furthest corners of our universe. FTL travel is the holy grail of science fiction.

  • @heyspookyboogie644
    @heyspookyboogie644 8 месяцев назад +6

    How can it be “perfect” reflection in water, glass, etc if you can see it? Wouldn’t that still mean there’s losses and it’s less than 100%?

    • @wjh31
      @wjh31 8 месяцев назад +2

      The reflection is perfect, but as it travels through the bulk of the water there's still a small amount that gets scattered which allows the beam to be seen as it passes the water.

    • @Oobservatory_X
      @Oobservatory_X 8 месяцев назад +1

      Reflection total 100% but the water is scattering the light and changing its parth as a result you see light beam

    • @humanbeing4995
      @humanbeing4995 8 месяцев назад

      The surface is perfectly reflective. Where is the light coming from and ending up? Hope this answers your question.

  • @reversefulfillment9189
    @reversefulfillment9189 8 месяцев назад +1

    Trapping light in a fiber cable loop was invented by the guy that proved the fridge light stays on when the door is closed.

  • @soutie123
    @soutie123 8 месяцев назад +1

    One of my favourite channels. Thanks for your content.

    • @dvoiceotruth
      @dvoiceotruth 8 месяцев назад

      Unassuming channel name, nerdy guy, speaks like he is eating cotton candy. What can you ask more? Much much better than the overrated nile red blah blah and his 'commenters gang'

  • @billiop
    @billiop 8 месяцев назад +4

    We learn about refraction and TIR in class 7th or 8th in India
    But saw the fibre for the first time like this..... beautiful ❤

  • @westonding8953
    @westonding8953 8 месяцев назад +6

    Wow! I knew how fiber optic cables worked but it did not occur to me to “store light” but on second thought I figured it would dissipate at some point because getting 100% percent “efficiency” just seems impossible.

    • @Dumbrarere
      @Dumbrarere 8 месяцев назад

      Seems? It genuinely is with our current level of technology, because it breaks the laws of thermodynamics. As with everything else made by human hands, there are expected losses with fiber optics. To send a signal extremely long distances, you need to make use of repeaters placed at equidistant intervals, and the loss of any one of these repeaters will disrupt the signal entirely (they are quite fragile and prone to electromagnetic damage from solar storms apparently). While it is theoretically possible to send a signal through an infinitely long optical cable (say one from an earth base to the moon or a geosynchronous satellite), you'd need an absurd number of repeaters, and it gets exponentially more difficult to keep the signal intact. I'd dare say, it becomes quite impossible after some point, as it's just not practical, nor worthwhile.
      At current, lasers are being developed and used to handle optical communications at extreme ranges. NASA tested one back in 2021 with the Laser Communications Relay Demonstration (LCRD) mission, and the technology is currently used by Starlink and a few other examples.
      That said though, he does say that while impossible, the concept still has uses.

  • @borispasternak2356
    @borispasternak2356 7 месяцев назад

    I like how you also actually explained the technology behind the sponsor's product, you know your audience!

  • @RedHedDes
    @RedHedDes 8 месяцев назад

    "I don't know if you've heard this already but light moves very fast" -Action Lab 2023

  • @anzaklaynimation
    @anzaklaynimation 8 месяцев назад +6

    It is the experiment I imagined in sixth grade when I was first introduced by optic cables in my computer science class. I think you performed the experiment for me.

  • @frederickingrando5469
    @frederickingrando5469 8 месяцев назад +5

    On top of being an incredibly informative and brilliantly interesting video as everyone of your videos always are that BEAR device is cool beans!

  • @KFCMmuc
    @KFCMmuc 8 месяцев назад +2

    Although it is a fun thought experiment, I think it is pointless to even try for another reason (but also connected to the lightspeed). Not only are the internal losses (cumulatively) so high that the energy dissipates almost instantly after killing the source, but I do believe that you physically cannot close the loop fast enough after shining light into it to even suggest there was a "stream of light circling in the loop (me paraphrasing)". The time you take to straighten out the fiber is something close to eternity in lightspeed terms. So it is safe to say that the optical fiber has gone dark beyond any all-day means of measuring long before you switched the lamp off at 8:26 ....

    • @preverted
      @preverted 11 дней назад

      Don't switch the lamp off then...just keep the light shining and release the bend. Might that work?

  • @Dudleymiddleton
    @Dudleymiddleton 8 месяцев назад

    A brilliant insight into fibre optics!

  • @harrisbinkhurram
    @harrisbinkhurram 8 месяцев назад +3

    My Fish Aquarium always does this, and its really bright.

    • @nuLabi
      @nuLabi 8 месяцев назад

      but it would only fully reflect from the surface of the water

  • @malcolmgeldmacher4998
    @malcolmgeldmacher4998 8 месяцев назад +3

    Since there’s an “acceptance cone,” ( 3:20 )couldn’t you have one fiber supplying light next to the end of the loop? Would that technically build up how much light was in there?

    • @u1zha
      @u1zha 8 месяцев назад +1

      Yup I believe that should work, good idea for a follow up video

  • @noahtemple8312
    @noahtemple8312 8 месяцев назад +1

    The idea of trapping light in a mirror room has toyed with my mind since I was about 8 years old. This video MADE MY DAY!

  • @LiborTinka
    @LiborTinka 8 месяцев назад +1

    Could you make a video about pentamirrors and how they work compared to pentaprisms? Refraction is also very interesting phenomenon - note that the angle of refraction actually depends on wavelength and this is why optical prism decompose white light into a rainbow. Little people can explain why this happens actually. The physics behind this phenomenon is interestingly tricky to explain and understand. The refraction angle in air/glass interface also changes wildly outside visible spectrum - this is one reason why windows are transparent for visible light but partially reflect infrared and UV light.

  • @deepakcs2797
    @deepakcs2797 8 месяцев назад +4

    Love your videos❤️❤️❤️

  • @JavierAlbinarrate
    @JavierAlbinarrate 8 месяцев назад +3

    6:28 there was no need to show the video of your last colonoscopy... 😉

  • @GrowingAnswers
    @GrowingAnswers 8 месяцев назад +1

    That’s what I work with daily. And you even had an SFP. That’s a bend insensitive type of wire meaning it’s less prone to loss with tighter bends. The fibers that travel kilometers are usually not bend insensitive due to cost and usually need to maintain a bend radius not smaller than a pop can. The light that travels through them is IR that is outside the range cameras can see. Some people don’t realize this and look into an open fitting thinking there is visible light. This is dangerous because the light is invisible yet high intensity and at the least will cause permanent blind spots in your eyes. What’s kind of crazy is the connectors must be impeccably clean to minimize loss. For this we use handheld microscopes and tip cleaners. Dust specs even 1/10th of that 1/10th “human hair” sized fiber will cause loss. Which can be easily picked up from air exposure. The style you have with the blue connectors are flat faced tips. The style more commonly being used today are green (apsc) which have slanted faced tips. This is to reduce reflectivity back into the fiber, upstream. Think of it like a window you when look outside. You can see some of your own reflection in the window depending on light conditions. But If look through a window off angle your own image isn’t directed back at you. One of the downsides to slanted connectors though is that when they meet through a bulkhead, they exert the pressure (psi) of the standing foot of an elephant against each other. The slants cause a slight diversion and the 1/10th human hair sized openings on the connectors tend to eclipse each other which is why mechanical connectors (splices) are inherent to more loss than fusion splices.

  • @fazergazer
    @fazergazer 8 месяцев назад

    ❤you can tell your viewers are passionate about physical science and accuracy, and that you encourage thought and discourse❤

  • @alexandergrace
    @alexandergrace 8 месяцев назад +4

    I've always wanted to build my own home and use even cheaper plastic fiber optics that run from outside my house to the basement and center of the home to give off light during the day. Always thought how cool it would be to light up my house with the sun rather than electricity. And as i typed this, i thought why not have a centralized light source that can be "dampened" rather than individual lights in every room. Anyways, friday night thoughts are done. lol

    • @BimotaMoon
      @BimotaMoon 8 месяцев назад

      This is worth watching a video on :D Anyone know of cases where fiber-optics are used with the sun being the light source?

    • @geli95us
      @geli95us 8 месяцев назад

      @@BimotaMoon You'd need a lot of cables to cover enough area to light up a room, and at that point, why not just use a solar panel?

    • @xGOKOPx
      @xGOKOPx 8 месяцев назад

      There's a town in Norway I think that's entirely in the shadow of a mountain for most of the year, they've placed giant mirrors to shine sunlight on the central square because mental health of inhabitants was negatively affected by the constant shadow

  • @slo3337
    @slo3337 8 месяцев назад +3

    Even if the trapped light did not dissipate, you would only see a few nano seconds of it when you let it out. So you probably could not see it anyways without a really really high speed camera.

    • @psirvent8
      @psirvent8 8 месяцев назад

      What about the Slo Mo Guys then ?

    • @BimotaMoon
      @BimotaMoon 8 месяцев назад

      A detector would be more effective in this case... (just now realizing thats all cameras are... photon detectors)

    • @DrDeuteron
      @DrDeuteron 8 месяцев назад

      Maybe a pulse yag laser doubled to green. That’s a megawatt for a few nanoseconds per pulse.

  • @DGRIFF
    @DGRIFF 8 месяцев назад

    You're sharing basic science from 100 years ago with the public. Nice.

  • @Ayuori
    @Ayuori 8 месяцев назад +1

    Could you use that to see the speed of light if you just had a long enough roll of that cable?

  • @kovacs88
    @kovacs88 8 месяцев назад +15

    If 100% of the light is reflected off the surface of the water, we wouldn't be able to see it from above.

    • @ceray4312
      @ceray4312 8 месяцев назад +13

      we only see the light that has scattered from the laser hitting water molecules. Thats how we can see lasers and so that dosent mean its not reflecting 100%

    • @westonding8953
      @westonding8953 8 месяцев назад

      We would not be able to see the laser in that case.

    • @pierrelabrecque8979
      @pierrelabrecque8979 8 месяцев назад

      @@ceray4312 can the way we observe light in waveform be analogues to only being able to see waves on a pond in contrast to the surface only. Just observation and no instruments? Or should I begin a medication regiment?

    • @anurimapal7768
      @anurimapal7768 8 месяцев назад

      I think it's called Tyndall effect

    • @ceray4312
      @ceray4312 8 месяцев назад

      @@pierrelabrecque8979 tbh I dont really understand what you mean by 'surface only', but firstly we dont see the waveform of light with just our eyes and secondly whether light is a wave or particle is up to debate (look up double slit experiment) so its not like water

  • @arkvoodleofthesacredcrotch6060
    @arkvoodleofthesacredcrotch6060 8 месяцев назад +1

    Maybe a giant sequence of loops so there are less intense bends, and not sure what options there are but a more reflective shielding could maybe help. Problem is, that much cable and special made would be a huge cost for not a lot of return seeing as how light is so fast that the difference would be miniscule if even measurable at that scale.

  • @andreassheriff
    @andreassheriff 8 месяцев назад +1

    Know what I'd love to see? A cable 186k miles long, culed up, so that if you shine light in one end, you'll see it come out the other a second later.

    • @MeppyMan
      @MeppyMan 8 месяцев назад

      Problem is you would need a lot of repeaters and amplifiers. So it wouldn’t be the “same” photons.

    • @andreassheriff
      @andreassheriff 8 месяцев назад

      @@MeppyMan good point

  • @clizardia
    @clizardia 8 месяцев назад

    Amazing. I always wondered about this.

  • @walkman1269
    @walkman1269 8 месяцев назад

    I work with fiber cable too. Each splice or termination introduces loss and reflections. Much more than a long section of cable.

  • @kengbrissy3074
    @kengbrissy3074 8 месяцев назад +1

    "I don't know if you heard this already, but light moves very fast"🤯

  • @starblaiz1986
    @starblaiz1986 8 месяцев назад +1

    I remember the Slow Mo Guys doing something a while back to slow light right down so they could record it. It was a while ago and I forget exactly what was involved, but I wonder if that could somehow be combined with this so the light would take longer to decay and thenyou could maybe store it for a more significant number of seconds 🤔

  • @Bystander333
    @Bystander333 8 месяцев назад

    Reminds me of a concept called "slow glass" from an old Sci-fi series of short stories (Bob Shaw).
    Basically it took decades for the light to travel through the glass, so people used them to replace their windows.

  • @chrisbalfour466
    @chrisbalfour466 8 месяцев назад +2

    Phosphorescent materials, known as glow in the dark pigments, are the answer to the question at the end of the video. They absorb light at a short wavelength and emit it at a longer wavelength that they shouldn't be able to, so the light they should emit is trapped and leaking out slowly due to quantum effects.

  • @rafaelperalta1676
    @rafaelperalta1676 8 месяцев назад

    I saw this once when our home wifi was being fixed. The guy shone a laser light through the fiber optic line to find the faulty/broken parts of the wire. The red light in the faulty sections can be seen close and far. It was amazing to see it in person.

  • @arifdanielnordin4908
    @arifdanielnordin4908 8 месяцев назад

    "what's your idea to store light for as long time as possible in a confined space?"
    me: light bulb

  • @LiborTinka
    @LiborTinka 8 месяцев назад +2

    This also reminded me of Dr. Mallet's time machine made of looping laser light (it supposed to 'stir up' spacetime enought to connect the moment machine has been turned on with the present moment...).

  • @gregntammie
    @gregntammie 8 месяцев назад

    I thought the bend radius on fiber optic cables had to do with them breaking, but I guess the signal is severely degraded first.Thanks, Great video.

  • @davidg4288
    @davidg4288 4 месяца назад

    We had really long rolls of optical fiber at work years ago, maybe 50 kilometers. It was unsheathed and spooled in a plastic box so it wasn't that big. We used it for testing fiber communications equipment in a lab with latency like you'd get once installed in the real world. We never tried looping it but I bet the lasers would not have made it around those spools too many times. It'd be detectable with equipment (optical time domain reflectometer) but not visually.
    Some of the equipment also contained sections of doped fiber that were pumped by a laser of a different wavelength and those could actually amplify the light in the fiber without converting it to an electrical signal first. That would have been interesting to connect in a loop but we didn't. Most long haul laser communications gear will power down the lasers if they don't see a valid signal, that's to protect the eyes of the technician who unplugs the wrong patch fiber and looks at it.

  • @xidiocyx9749
    @xidiocyx9749 8 месяцев назад

    the fact that you can see the light on the outside, itself disproves the claim of trapping light

  • @ElijahPerrin80
    @ElijahPerrin80 8 месяцев назад +1

    I remember as a kid thinking about a light battery that is a reflective sphere, but I always realized that even if you could make a perfect sphere, you always have a way to get the light in, and that would be enough to lose the photon... I always wondered tho if the photons would become one photon that is much larger or higher energy and how do you align the photon to exit the light battery in a controlled manner?

  • @PineapplePerson1
    @PineapplePerson1 8 месяцев назад

    One of my friend's dad is a fiber optic worker and one time he let us learn and fuse the glass. It was way cool.

  • @brianegendorf2023
    @brianegendorf2023 8 месяцев назад +1

    To store the light in a confined space, you need to make it so the loops essentially refresh the light. Its not enough to have total reflectance in the cable..SOME of the light has to be leaked out and back in again at set intervals in the cable to refresh. The "lost" light has to "rejoin" light that had previously lost some of its luster to add up to brighter light. Think of it like a helix. you need an inner and outer carrier area of light in the optical cable that trades light back and forth to maintain brightness.

  • @moroniafrifa614
    @moroniafrifa614 8 месяцев назад

    That's incredible!

  • @0neIntangible
    @0neIntangible 8 месяцев назад

    Use effects similar to kaleidoscopes end to end to break up wavelengths into different diffraction patterns, and then recombine these same patterns at the other end, and test & compare for echoes, delays or reverberation of light speeds end to end, within the lengths of cable(s).

  • @piconano
    @piconano 8 месяцев назад

    You make science fun.

  • @HelloKittyFanMan.
    @HelloKittyFanMan. 8 месяцев назад

    Interesting video, James, thanks!

  • @DeepThinker193
    @DeepThinker193 8 месяцев назад +1

    Damn, thought I could finally get my perfect light saber.

  • @DanielDelRey.
    @DanielDelRey. 8 месяцев назад

    I wondered this too when I fusion spliced a fiber optic strand in a ring. Didn't think of introducing light at a bend

  • @91wheelz
    @91wheelz 8 месяцев назад

    Would there be a difference in how long light lasts within the cable if you were to seal off one end and then somehow make a mechanism with a sliding "trap door" to cut off the light from the flashlight? I hope this makes sense.

  • @icraftcrafts8685
    @icraftcrafts8685 8 месяцев назад

    this is what is done to electronically read layer 2 info etc while keeping the light in a loop in real fiber devices. the switching decision then angles the optics correctly.

  • @xtremeownagedotcom
    @xtremeownagedotcom 8 месяцев назад +14

    On the note of adding delays- you should add a reference of the NYSE. They use a very long piece of fiber for purposely delaying signals.

    • @warlockpaladin2261
      @warlockpaladin2261 8 месяцев назад

      How long and how much of a delay?

    • @RealCadde
      @RealCadde 8 месяцев назад +2

      @@warlockpaladin2261 Enough to even out the playing field. 😉

    • @UncleKennysPlace
      @UncleKennysPlace 8 месяцев назад +1

      It was originally copper, I believe.

    • @phizc
      @phizc 8 месяцев назад

      ​@@warlockpaladin226161km. 350 microseconds delay. It's nicknamed the Magic Shoebox.

    • @MeppyMan
      @MeppyMan 8 месяцев назад +4

      Yep. Businesses started paying big money to store their computer systems as close to the exchange as possible. Also paying to make sure the fibre to the exchange was as straight as possible.
      The crazy things greed will cause people to come up with.

  • @geauxracerx
    @geauxracerx 8 месяцев назад

    This is how Fiber lasers achieve way more output than input. A group of diodes lase into a fiber optic loop and builds up and is then released at a higher output

  • @ten-tonnetongue
    @ten-tonnetongue 8 месяцев назад

    I really like optics. One of my favourite sciences. Between that and acoustics/cymatics... they're pretty even. I also really like fluid dynamics but that's a bit beyond me.

  • @phloopy5630
    @phloopy5630 8 месяцев назад

    Video idea: trapping electric currents in superconducting wires. Electrons flow without resistance in superconductors, so electron *should* travel around a looping cable of superconducting material for as long as the superconductivity lasts.

  • @ThePit0007
    @ThePit0007 8 месяцев назад

    Fabry Pérot! I ve been working on table-top experiments, with cavity photon lifetimes below the microsecond scale, but in fact, they are people doing much better, eg in the LIGO/VIRGO interferometer, I don t have the numbers on top of my mind but the recycling system, together with 3 or 4 km arms, has I would say photon lifetimes on the order of 10 ms, that would make it visible to naked eye! Cheers and thanks for the video

  • @Nyxiality
    @Nyxiality 8 месяцев назад

    As a systems administrator, I deal a lot with FOC's. Let me tell you, its so much easier to work with as if theres a sever in the line, you can find out exactly where it is

  • @SxyRikku
    @SxyRikku 8 месяцев назад

    Amazing work. ❤❤❤

  • @AeroGraphica
    @AeroGraphica 8 месяцев назад +1

    By definition, any trapped light will be invisible to an observer.

    • @u1zha
      @u1zha 8 месяцев назад

      Visible when the loop is opened. Just for a very short time, so the experiments shown in video were totally not expected to show anything, but a high speed camera (or a much longer loop) would do perhaps.

    • @AeroGraphica
      @AeroGraphica 8 месяцев назад

      @@u1zha But then it is not trapped any more.

  • @jonathanb6371
    @jonathanb6371 8 месяцев назад +1

    This is similar to a super conductor that never losses electron flow as heat, but with light/photons instead.

  • @michaelme4028
    @michaelme4028 8 месяцев назад +1

    Probably coupling in a signal into the loop and coupling out a signal for view on an oscilloscope could be an interesting experiment. But the fiber needs to be long enough for a decent delay and short enough due to the attenuation in the fiber.

  • @Pit_stains
    @Pit_stains 8 месяцев назад

    Digitally, what happens to the signal if the cable's bent too much? Does it lose some 0's and 1's?

  • @Throefly
    @Throefly 8 месяцев назад +1

    Almost perfect reflection has a very different meaning when you're talking about 20+ miles of this cable. It becomes very noticeable. To the point that the signal must be amplified past a certain point, depending on your glass and your light source.

  • @Reanchi
    @Reanchi 8 месяцев назад

    They already stored light back in 2013 using a cryogenically cooled opaque crystal of yttrium silicate doped with praseodymium. One control laser shining on it made the crystal transparent to light, another laser shone through the crystal was then turned on, after which, the control laser was turned off, returning the crystal to an opaque state, effectively "freezing" the light inside, then turning off the second laser. Turning the crystal transparent again allowed the crystal to release the light as if the second laser was shining through. It could maintain the coherence for about a minute before fizzling.

  • @tomholroyd7519
    @tomholroyd7519 8 месяцев назад

    Very effective demo.

  • @mathijszwier6026
    @mathijszwier6026 8 месяцев назад

    I like how you wiggled the bend in the fibre optic cable to make sure the photons would enter it

  • @namesurename3441
    @namesurename3441 8 месяцев назад

    you can also slow down the photon emission to get enough time to connect the cable to ensure the experiment results

  • @onmyworkbench7000
    @onmyworkbench7000 6 месяцев назад

    During the cold war on the West side of the Berlin Wall in remote areas of the wall the U.S. installed a Fiber Optic X,Y grid that was buried in the ground it was used for vehicle detection. The way it worked was that the Fiber Optic cable was laid out in an X,Y grid many meters wide that followed along the wall. The points where the X fiber crossed over the Y fiber was a grid reference point such as X1/Y1, or X10/Y20 , Y50/X32 and so on. The cables had light running through them all the time and the light level that was going in and was coming out of the cables was measured. If a vehicle drove over the cable the compression of the ground caused a reduction of the light level through the intersecting cables at or near the grid points where the vehicle was passing over the cable allowing the location of the vehicle to be determined using the grids closest reference points.

  • @SmoothKenny
    @SmoothKenny 8 месяцев назад +2

    I thought you would make a 3-way adapter to "inject" the light, but hitting that critical angle might be hard. Oh well🤷🏽‍♂️

  • @godswillchukwuemeka7592
    @godswillchukwuemeka7592 8 месяцев назад

    Perhaps if we make multiple small loops as trapping points on the same cable we should be able to trap as much as possible that we need, what do you think about this?