- Видео 29
- Просмотров 43 213
CCS CISAC
Добавлен 3 мар 2022
Center for Chemical Sensors - Chemical Imaging and Surface Analysis Center
Teaching future researchers various concepts, techniques, and tools related to the areas our center is focused on.
You will learn concepts related to spectroscopy, physical chemistry, several chemical-related threats, and methods for detecting, classifying, and quantifying said threats.
Teaching future researchers various concepts, techniques, and tools related to the areas our center is focused on.
You will learn concepts related to spectroscopy, physical chemistry, several chemical-related threats, and methods for detecting, classifying, and quantifying said threats.
Partial Least Squares (PLS) with PLS-Toolbox
Partial Least Squares (PLS) with PLS-Toolbox
Просмотров: 809
Видео
Use of Orange Software for Chemometric Analysis
Просмотров 316Год назад
En este webinar el estudiante Jorge Plata ofrece una introducción a el uso de la herramienta Orange para realizar análisis quimiométricos. CAPÍTULOS 00:00 Mas informacion del presentador 👉 www.uprm.edu/ccs-cicsa/dt_team/jorge-plata/ Desea saber mas sobre el grupo? Visita nuestra pagina! 👉 www.uprm.edu/ccs-cicsa/ Observa nuestros webinars/eventos 👉 www.uprm.edu/ccs-cicsa/news/ Observa nuestros p...
Raman & IR calculations using MS Excel
Просмотров 222Год назад
Raman & IR calculations using MS Excell with professor Samuel Hernandez.
Aplicaciones para Espectroscopía Raman
Просмотров 87Год назад
En este webinar el estudiante Giancarlo Vargas ofrece una introducción a uno de los fenómenos mas utilizados para analizar compuestos. La espectroscopía Raman es un fenomeno espectroscópico. CAPÍTULOS 00:00:00 Mas informacion del presentador 👉 www.uprm.edu/ccs-cicsa/dt_team/giancarlo-l-vargas-alers/ Desea saber mas sobre el grupo? Visita nuestra pagina! 👉 www.uprm.edu/ccs-cicsa/ Observa nuestro...
Optimizando Resultados - Herramientas Six Sigma de Cinturón Amarillo y Verde
Просмотров 38Год назад
In this webinar, graduate student Steven Palmer shows how to improve project otucomes using Green and Yellow Belt Six Sigma Tools. CHAPTERS 00:00 Intro More info about the presenter 👉 Want to know more about our group? Visit our page! 👉 www.uprm.edu/ccs-cicsa/ Observa our webinars/events 👉 www.uprm.edu/ccs-cicsa/news/ Observe our projects 👉 www.uprm.edu/ccs-cicsa/our-work/ Observe our facilitie...
Como Preparar un Afiche (Poster) Científico
Просмотров 122Год назад
In this webinar, professor Yaliz Loperena shows how to create a research poster. CHAPTERS 00:00 Intro More info about the presenter 👉 Want to know more about our group? Visit our page! 👉 www.uprm.edu/ccs-cicsa/ Observa our webinars/events 👉 www.uprm.edu/ccs-cicsa/news/ Observe our projects 👉 www.uprm.edu/ccs-cicsa/our-work/ Observe our facilities 👉 www.uprm.edu/ccs-cicsa/facili... #Poster #Rese...
How to Graph Spectra using Excel
Просмотров 990Год назад
In this webinar, professor Samuel Hernandez shows how to graph spectra using the Excel software. CHAPTERS 00:00 Intro More info about the presenter 👉 www.uprm.edu/ccs-cicsa/dt_team/samuel-hernandez/ Want to know more about our group? Visit our page! 👉 www.uprm.edu/ccs-cicsa/ Observa our webinars/events 👉 www.uprm.edu/ccs-cicsa/news/ Observe our projects 👉 www.uprm.edu/ccs-cicsa/our-work/ Observ...
Simulate IR and Raman Spectrum using Gaussian and GaussSum
Просмотров 4,2 тыс.Год назад
In this webinar, graduate student Edwin Caballero shows how to simulate IR and Raman spectrum using the Gaussian program, GaussSum interface, and GaussSum software. Gaussian is a computational chemistry software used to simulate properties for molecules. It is a very useful tool to develop educated guesses for your research and even for research projects themselves! CHAPTERS 00:00 Intro 00:45 C...
Introduction to Principal Component Analysis (PCA) for Beginners
Просмотров 4 тыс.Год назад
In this webinar, graduate student Edwin Caballero offers an introduction to one of the most used algorithms for analyzing data. Principal component analysis is an algorithm that reduces the dimensionality of your data. Used a lot for analysis that involved more than 3 variables (multivariate) and recently essential for machine learning. CHAPTERS 00:00 Intro 04:13 Applications 05:31 A bit of the...
What is a Quantum Cascade Laser? It can be used for what?!
Просмотров 3,8 тыс.Год назад
In this webinar, graduate student Edwin Caballero offers an introduction on what is quantum cascade laser (QCL) spectroscopy. A quantum cascade laser is a type of semiconductor laser that uses a staircase-like structure to generate and emit light in the infrared to terahertz frequency range. CHAPTERS 00:00 What is a Quantum Cascade Laser 04:27 Brief History 12:17 How a QCL Works 22:44 Spectrosc...
Accelerate and Improve your Workflow with Spectral Data!
Просмотров 162Год назад
Join us in this webinar recording as we show you how to effectively merge multiple .csv spectral files into one cohesive .csv, organize the spectral data, and graph the results using Excel and the R programming language. Our instructor will guide you through the process step by step, providing you with the skills and knowledge you need to effectively analyze your spectral data. Whether you're n...
Improve Team and Personal Comunication with MS Teams
Просмотров 872 года назад
In this webinar, graduate student Edwin Caballero shows how to upload, organize, and track your project using Microsoft Teams. Teams is a software used to create an area for individual projects. These areas can be further divided by sections (channels) with each having their own post section, files, calendars, tasks, etc. Teams is extremely useful to documenting tasks, archiving files, communic...
Get Noticed for your Work and Research with these 3 Sites!
Просмотров 2952 года назад
In this webinar, graduate student Edwin Caballero shows how create a LinkedIn, ResearchGate, and ORCID iD account. LinkedIn is more focused on your general professional information while ResearchGate and ORCID iD focus more on the research part. ResearchGate documents all the aspects for your research career while ORCID iD sums up the information for a more digestible presentation. CHAPTERS 00:...
Introduction to Partial Least Squares Discriminant Analysis PLS DA for beginners
Просмотров 9 тыс.2 года назад
In this webinar, graduate student Edwin Caballero offers an introduction on what is partial least squares discriminant analysis (PLS-DA) PLS-DA is a model that classifies unknown samples in predetermined groups or classes for multivariate data (more than 3 variables). CHAPTERS 00:00:00 Intro 00:04:50 How PLS-R Works? 00:13:14 How does PLS classify? 00:25:45 What algorithm does it use? 00:35:49 ...
Accelerate your Citing with this Free Software!
Просмотров 3902 года назад
In this webinar, graduate student Edwin Caballero shows how to import, create, organize, cite, list, and share references using the reference manager software Mendeley. CHAPTERS 00:00 Intro 02:13 How do I download Mendeley? 03:51 How do I even start? 07:08 How do I organize references? 08:38 How do I create a reference? 19:29 How do I upload a reference? 27:14 How do I install Mendeley in MS Wo...
How to pre-process your spectra for research (SNV, MSC, Derivatives, etc.)
Просмотров 10 тыс.2 года назад
How to pre-process your spectra for research (SNV, MSC, Derivatives, etc.)
Realiza experimentos de manera remota con Infinity Labs
Просмотров 292 года назад
Realiza experimentos de manera remota con Infinity Labs
Project Management Workshop for Researchers Part I
Просмотров 762 года назад
Project Management Workshop for Researchers Part I
Introducción a Modelaje Suave Independiente por Analogía de Clases (SIMCA) para principiantes
Просмотров 4512 года назад
Introducción a Modelaje Suave Independiente por Analogía de Clases (SIMCA) para principiantes
How to deposit analyte on a substrate using ESI spray deposition
Просмотров 892 года назад
How to deposit analyte on a substrate using ESI spray deposition
Camino de Mujeres Empoderadas en STEM | Perspectiva de estudiantes y profesionales
Просмотров 242 года назад
Camino de Mujeres Empoderadas en STEM | Perspectiva de estudiantes y profesionales
How to deposit analyte on a substrate using smearing deposition
Просмотров 792 года назад
How to deposit analyte on a substrate using smearing deposition
PCA: Desarrolla y Analiza en The UnscramblerX
Просмотров 1022 года назад
PCA: Desarrolla y Analiza en The UnscramblerX
Introducción a Tecnologías de Cadena de Bloques (Blockchain)
Просмотров 1892 года назад
Introducción a Tecnologías de Cadena de Bloques (Blockchain)
Cómo Escribir Artículo Cientifico en Formato IEEE por Autores con Experiencia
Просмотров 3,1 тыс.2 года назад
Cómo Escribir Artículo Cientifico en Formato IEEE por Autores con Experiencia
Planifica tus Proyectos usando esta Herramienta Gratis
Просмотров 592 года назад
Planifica tus Proyectos usando esta Herramienta Gratis
Usando VOSviewer y JabRef para Investigación
Просмотров 1592 года назад
Usando VOSviewer y JabRef para Investigación
Fundamentos de Espectroscopía Infrarroja (IR)
Просмотров 5072 года назад
Fundamentos de Espectroscopía Infrarroja (IR)
Introducción al Análisis de Componentes Principales (PCA) para Principiantes
Просмотров 4,1 тыс.2 года назад
Introducción al Análisis de Componentes Principales (PCA) para Principiantes
Gracias por compartir su conocimiento, casi no hay videos donde expliquen detalladamente 👍
Thanks for the great video. Very clear explained. I love that you made the code available, but I have trouble reaching the website it is posted on. Can this be due to the country I am reaching it from? And can the code be found in another location?
Hello, I am trying to access your website, but it has been down for the last two days. I am also trying to access the Python scripts you mentioned for data processing. Could you help me with this?
Very good & clear explanation. Thanks.
thank you for your very clear explanation. It helps me a lot
Битый час видео ни о чем, на внимательный просмотр ушло двое суток. Пересказ общих фактов о PLS-DA из википедии. Если кто не знал узнает про ложно позитивные, ложно негативные, истинно позитивные, истинно негативные ответы, некоторые числовые характеристики для оценки качества разных моделей, причем с ошибками в формулах. Ссылок на примеры бесплатных программ или готовых скриптов реализующих PLS-DA тут не дается. В конце конкретно упоминается лишь американский спектрометр ATR-FTIR для идентификации "кокаинуума", взрывчатки, и лазерный спектроскоп отпечатков пальцев, видео похоже больше как реклама его возможностей для далеких от математики богатых таможенников.
el matlab lo consigues gratis en tutoriales de yt y minitab igual, USE PAST SOFTWARE LIBRE PARA HACER PCA peor tiene pocas opciones como para escoger el tipo de metodo de calculo
I also mention Orange. It is a Python-based free software and it has a Spectroscopy add-on, which is excellent for the spectra visualization & preprocessing. The respective tutorials are encountered in RUclips too.
Hola no me quedo claro como van nombrados los autores? Jeanpierre es el apellido? D? Valentín ?Acevedo?. Gracias.
Que buen video que bien explicado!!!
Hello , thank you for this nice video , for the scattering , you mentioned that one of reason for scattering is the molecule not at the same distance , so how can i make the molecule at the same distance if i prepared as example solution contain dye dissolved in water , i prepared different concentrations then i measured spectra for them and i got scattered for the data, thank you.
Good quality content
Awesome!
L = Light is A = Amplified by the S = Stimulation of the E = Emissions of R = Radiation = LASER is a DEVICE. Then a Stream of PHOTONS are shot out of the LASER DEVICE...so it is NOT what you said. A beam of light...NO..its a stream of photons. A LASER is a DEVICE a stream of PHOTONS is what happens so the way that you described it is kind of correct but in Pyhsics we don't do KIND OF... There are 2 parts to this SYSTEM.
I like so much the video, but I'd to see when you use the validation and load test data. Is there a video like this?
am ok with data normalization (i.e., scaling), however I have a doubt concerning to the importance of DP methods for modeling!
For comparing 2 group, we can coded group to +1 and -1. If I have more than 2 group, let say 3 group, how i am going to coded? Please give some examples
Tengo la misma duda, cómo se puede solucionar?
can anyone point for me places to download spectral data for my research?? i am lokking for bearings spectrum data
Professor, which one from the programs you've mentioned on the video that can "mass" preprocess spectra? like can do multiple spectra in one touch Thank you
How I can see the equation of PLS models? Is there a specific setting?
Muy claro. Felicitaciones!!! y Gracias por subirlo
does this work on crystal structure as well?
Thank you so much for this informative and well-explained session. I have been trying to write some code in MATLAB to perform MSC, could you please help with a script to execute that? Thanks
Good
Man. I just found out that I need to preprocess my data for MSC, this channel has really helped me. Thank you for the good job!!
helpful
Super technical presentation on QCL perhaps the best on internet
Thank You! Such a good tutoial!
a very good explanation 👍👍
Hola Edwin, fue una excelente presentación. Sin embargo, me gustaría que realizaras un video, donde uses el PCA, pero haciendo énfasis en algún problema de negocios. Saludos
How can this be useful in chemometrics
Hello there! Simulating the molecule of interest for your research is good to identify vibrational modes and have a good educative guess of how its spectrum will look like. If you already know this and want to explore variation, classification or regression, simulating might not be as relevant. However, I have used simulated spectra and manually changed its baseline and/or intensity to simulate artifacts. This helped me visualize why the scores and loadings plot behaved in specific ways. Hope this helps! - Edwin
Wow that is awesome!!! The only point is the voice quality but your content and your presentation was awesome. Thanks a lot
me gustaria que hicieran un curso completo de quimiometria, seria genial
Buenas tardes seria bueno que esots videos tambien los compartieras en español
buenos dias seria bueno que compartieran todos estos temas de quimiometria en español tambien estoy muy interesado en seguir aprendiendo de estos temas.
Thank you so much ! I've been looking for these types of information for weeks. This is so far the mos informative stuff I watched. I just need to get how to apply it with R now hahaha. (Forest scientist trying to work with spectral data here).
Always makes me happy when it helps someone! In the following link I started writing R scripts for SNV, MSC, and normalization. May not be optimal but they will give you a good start. www.uprm.edu/ccs-cicsa/files-info-for-research/r-language-resources/ Have a great day! - Edwin
you dont need R that much.There's a Git link in which the codes for all these are already given
Hello, an excellent video. The best explanation of spectral preprocessing techniques I've seen in years. Taking advantage of the occasion, I have a question that I would appreciate if you would help me by clarifying it. All these current techniques are on the spectra individually (rows), but in the literature, I find other techniques, such as mean centering, auto-scale, and variance scale, among others, that act on the variables (columns). In some manuals, I found the latter necessary because several multivariate algorithms compute results driven by variance patterns in the independent variables. Specifically, my question is: When to use tools such as mean centering, auto-scale, and variance scale, or are they already integrated into techniques such as PLS?
Thank you for your kind words. Hope you are doing well. Mean centering is used to remove the common information on your data. Chemometrics assumes that variation implies information, hence why mean centering is so useful. When using PCA or PLS, mean centering the data allows the average variation between samples to be placed on the origin (0,0) of the scores plot. Auto scaling is usually used to leave the mean at zero and the standard deviation at one. From what I've understood, you scale variance when the variables that are being analyzed have very different magnitudes. This make some variables overshadow others, hence dividing the std allows them to play on an even field. Hope this gave some insight. Regards! - Edwin
Hello! Thank you! The best video in the net on data pre-processing I found so far! In Unscrambler, when you run the PCA based on the original data, you have the choice to select mean centering, which I think is meant to get rid off scattering. Would you in all,cases preprocess data with SNV and maximum centering?
Hello! Thank you for your kind words. The choice depends on what I (Edwin) want to study with my spectra. For presentation I would use baseline correction and SNV to maintain as much as the original shape of the spectra as possible. For creating models, I usually use 12 different combinations of DP methods. Use SNV, MSC, SG1, and SG2 separately and then combine them in different orders (SNV+SG1, SG1+SNV, MSC+SG1, etc.). Once I have a matrix with each different DP method, I create a model for each different matrix. This way I can determine which combination gave the most optimal results. However if the artifact can be seen clear as day on the data you can simply use the DP method that best reduces the variation. Hope this helps! We are welcomed to any suggestions and/or corrections. Hope you have a great day!
Thank you for your attention! Comments? Suggestions? Recommendations? All options are welcomed!
Application of compositional data analysis to proteomics data.
This was a very helpfull lecture however It would be interesting to run code (real time) on r and comment the results of the outputs with real data.
@@claudiaazevedo4073 Thank you for your feedback! A great idea, I will develop a webinar or workshop in the future. - Edwin
This is a very helpful video, but I have a question, which is the difference between PLS DA and SIMCA? I mean, when should I use each method? Thanks
Thank you for your attention! Comments? Suggestions? Recommendations? All options are welcomed!
Thank you for your attention! Comments? Suggestions? Recommendations? All options are welcomed!
Gracias por el vídeo Me ayudó mucho para el análisis de mi trabajo de grado Excelente
Nos alegra escuchar eso Mucho éxito en su trabajo!
Me gustaría que siguieran compartiendo más videos de esto
Thank you for your attention! Hope that you all liked the video. Comments? Suggestions? Recommendations? All options are welcomed!
Gracias por su atención! Espero que les haya gustado el webinar. Comentarios? Sugerencias? Recomendaciones? Todas las opciones son bienvenidas!
Amazing!!!
Thank you for the feedback! Hope you have a great day
Thank you for your attention! Hope that you all liked the video. Comments? Suggestions? Recommendations? All options are welcomed!
Gracias por su atención! Espero que les haya gustado el webinar. Comentarios? Sugerencias? Recomendaciones? Todas las opciones son bienvenidas!
Thank you for your attention! Hope that you all liked the video. Comments? Suggestions? Recommendations? All options are welcomed!
Gracias por su atención! Espero que les haya gustado el webinar. Comentarios? Sugerencias? Recomendaciones? Todas las opciones son bienvenidas!