Leibniz integral rule

Поделиться
HTML-код
  • Опубликовано: 10 ноя 2024

Комментарии • 85

  • @sigfridsixsis3255
    @sigfridsixsis3255 4 года назад +24

    Wow, this is undoubtedly the best explanation of Leibnitz integral rule

  • @joemccool6232
    @joemccool6232 7 лет назад +5

    You really make this intuitive. Nicely done, Brian!

  • @JamesVestal-dz5qm
    @JamesVestal-dz5qm Год назад

    A few months ago I saw Kent wink at me at Armstrong chapel and say we got your back buddy! Thanks for the support kent!

  • @FrederickHyltonDei
    @FrederickHyltonDei 8 дней назад

    Outstanding teaching!!!!

  • @GoutamDAS-ls1wb
    @GoutamDAS-ls1wb 4 года назад +1

    Best exposition on this topic! Thanks a bunch sir.

  • @liuyxpp
    @liuyxpp 2 года назад

    The most concrete derivation I have seen so far.

  • @AnshumanKumar007
    @AnshumanKumar007 8 лет назад +7

    Excellent video sir!!!

  • @ベトコン-g5p
    @ベトコン-g5p 5 месяцев назад

    I just wish you read this. Thank you for making this awsome vedio

  • @jameschen2308
    @jameschen2308 4 года назад +1

    This... IS A GODSEND

  • @abhirup619
    @abhirup619 8 месяцев назад

    best explanation on the internet

  • @radiantaradianta4232
    @radiantaradianta4232 6 лет назад

    Excellent way to explain how Leibniz found the formula

  • @alictg81
    @alictg81 3 года назад +1

    Great demonstration! Thanks.

  • @1MstAkey
    @1MstAkey Год назад

    Thank you so much for your cristalline explanation

  • @zlatanbrekke6538
    @zlatanbrekke6538 3 года назад +1

    Fantastic video, increadibly well explained

  • @AdityaKadamMechanical
    @AdityaKadamMechanical 6 лет назад +10

    Thanks Sir :) I had studied this before but came here to revise after hearing a dialog in Young Sheldon ;)

  • @josexavierneto
    @josexavierneto Год назад

    Excuse Sir. Brilliant!!! Thank you.

  • @anujmishra9077
    @anujmishra9077 9 лет назад +9

    Thank you so much sir.. That helped a lottt!! .... At 7:11 it should be F(t,a) rather than F(a,t) since u have taken the function to be F(t,x).. and same for F(b,t)... Thanks again..

    • @GK-oj3cn
      @GK-oj3cn 6 лет назад

      No. He missed to explain the part about mean value theorem. Check out here ruclips.net/video/wkh1Y7R1sOw/видео.html

  • @artcellCTRL
    @artcellCTRL 2 года назад +1

    incredibly clear explanation, thx sir

  • @andrewbetz535
    @andrewbetz535 Год назад

    Awesome explanation, super intuitive

  • @xuanqiliu2307
    @xuanqiliu2307 3 года назад +1

    Awesome explanation! Love it!

  • @113hydra
    @113hydra 6 лет назад +2

    Thanks for such an awesome video. It cleared things up quite well.

  • @dallaswwood
    @dallaswwood 7 месяцев назад

    Great explanation

  • @JamesVestal-dz5qm
    @JamesVestal-dz5qm Год назад

    Logan I still remember that you're proud of me.

  • @sherifmostafa4656
    @sherifmostafa4656 10 лет назад +3

    Thanks Brian. This was really helpful!

  • @AsiaCrasie
    @AsiaCrasie 7 лет назад

    love the illustrations. Thank you so much!

  • @hemnathl
    @hemnathl 4 года назад

    great explaination bro. Thank you very much.

  • @xoppa09
    @xoppa09 8 лет назад

    Clarification question. You can use the taylor linear approximation for f( t + delta t, x) because delta t goes to zero, in the limit.
    And you used the approximation, in the limit as Δt -> 0,
    f( t + Δt , x + Δx ) = f(t,x) + ∂f/∂t Δt + ∂f/∂x Δx
    Here Δx = 0 , so we get f( t + Δt , x ) = f(t,x) + ∂f/∂t Δt

    • @brianstorey7830
      @brianstorey7830  8 лет назад

      yes, for a function of x and t, the general expansion is as your write here. If you are holding x fixed and looking at changes in t you get the result above. So yes, I think what you wrote here is correct.

    • @leonidosovtsov1013
      @leonidosovtsov1013 7 лет назад +1

      It's not correct!!! By Taylor: f(t+ Δt,x) = f + ∂f/∂t Δt + ½∂²f/∂t² Δt² + ... and not only f + ∂f/∂t Δt.
      Why we break ½∂²f/∂t² Δt² + ... ??? Because it's easy?

    • @michaelsweeny4005
      @michaelsweeny4005 4 года назад

      @@leonidosovtsov1013 please correct me if I'm wrong, but I thought if you use taylor's, especially if it's for numerical applications, since you would have \Delta t^2, and you expect it to be small, then ^2 would make it "vanish". Is it not the same here?

    • @zlatanbrekke6538
      @zlatanbrekke6538 3 года назад

      @@leonidosovtsov1013 its because the other terms get so small they’re insignificant. If delta(t) = 0.0001 then delta(t)^2 = 0.0000001, and delta(t)^3 = 0.0000000001. Imagine when delta(t) -> 0 … The other terms doesn’t really affect anything, and only make the maths Worse, so we ignore them

  • @dagadabhanu
    @dagadabhanu Год назад

    wow, such a cool intuition
    Thanks

  • @Sky-pg6xy
    @Sky-pg6xy 3 года назад

    Amazing video!

  • @halfehalfa2323
    @halfehalfa2323 6 лет назад +2

    At 6:33 you say that the term goes away because in the limit you are integrating from a to a. But at 7:00 the integral has the same boundaries and it becomes a constant? I dont really get that.

    • @brianstorey7830
      @brianstorey7830  6 лет назад +1

      The terms that stay around are divided by delta t, so that when I take the limit of dt going to zero, those terms aren't zero. It all has to do with whether there is a dt on the bottom of the expression or not.

    • @halfehalfa2323
      @halfehalfa2323 6 лет назад +1

      Brian Storey so ,because the integral is divided by the very small delta t that converges to zero, we still have a value at that point, right? I think i got it now. Thanks for your answer!

    • @zlatanbrekke6538
      @zlatanbrekke6538 3 года назад

      @henk Jekel its just because we Get a really small number divided by another really small number, scaling it up to a normal number. Remember, 0/0 can still be a number

  • @dankazmarek1259
    @dankazmarek1259 4 года назад

    It is brilliant, timeless proof. Did it come up by yourself?

  • @abhiyantriki139
    @abhiyantriki139 3 года назад

    Finally I get the essence !!! tysm

  • @kusummishra8225
    @kusummishra8225 6 лет назад

    superb video

  • @hemnathl
    @hemnathl 4 года назад

    sir can you please tell how you learnt so much math being a mechanical engineer. your really cool.

  • @JamesVestal-dz5qm
    @JamesVestal-dz5qm Год назад

    Sam revolinski thought my dad was a genius but the truth is I can do more complex math than my dad now.

  • @plaxen1
    @plaxen1 8 лет назад +1

    so much sense. Thank you!

  • @ludviglundgren7353
    @ludviglundgren7353 Год назад

    Good stuff

  • @pankajshrivastav49
    @pankajshrivastav49 4 года назад

    Very nice sir

  • @fernandoescobar4039
    @fernandoescobar4039 Год назад

    thank you sir.

  • @mastermike890
    @mastermike890 8 лет назад

    great video

  • @JavierBoncompte
    @JavierBoncompte 4 года назад

    Amazing! Thanks

  • @soulmusic6530
    @soulmusic6530 6 лет назад

    Great lecture but can u tell me the name of your blue pen.

    • @brianstorey7830
      @brianstorey7830  6 лет назад

      www.amazon.com/Sakura-6-Piece-Micron-Assorted-2-PACKS/dp/B00P89YYXM/ref=sr_1_cc_2?s=aps&ie=UTF8&qid=1523817406&sr=1-2-catcorr&keywords=micron+pens+05+assorted+colors
      Pigma micron 0.45 mm. They are really nice pens. I tried a few different brands and thickness for recording to see what showed up the best and I liked the way these looked.

  • @ChillWithAbhishek
    @ChillWithAbhishek 9 лет назад

    That was awesome :). Thanks a lot !

  • @ztdep
    @ztdep 4 года назад +2

    How to transform the third term? F(a,t) da/dt at 7:39

    • @zlatanbrekke6538
      @zlatanbrekke6538 3 года назад

      He assumed f evaluated at f(a,t) is constant since delta(t) is really small. So he move f(a,t) out of the integral, and solve integral. The a’s cancel out and he is left with f(a,t)*da/dt * delta(t) / delta(t) = f(a,t)*da/dt

    • @tonyjing7305
      @tonyjing7305 2 года назад

      That red term in the bottom line at 7:39 actually has a lowercase f, i.e. it is -f(a,t)*da/dt. You can also think of it this way: (1/Δt) * integral of f dx from a to [a + da/dt*(Δt)] approaches the area of a rectangle, because we are taking the limit as Δt approaches zero. Hence the expression = (1/Δt) * base * height = (1/Δt) * base * (height when x equals a) = 1/(Δt) * {[a + da/dt*(Δt)] - a} * f(a, t) = 1/(Δt) * [da/dt*(Δt)] * f(a, t) = f(a, t) * (da/dt).

  • @brendawilliams8062
    @brendawilliams8062 3 года назад

    Thank you

  • @steveschmidt2399
    @steveschmidt2399 6 лет назад

    Wonderful explanation, thank you. At the very end, why do we subtract the red region, wasn't that excluded from the integral? That is, the green region integral (a->b) (df/dt)dx only included the area above f(a), didn't it? Seems that we would want to subtract the tiny black region immediately above the red region though you show that it --> in the limit. Thanks.

    • @adityaprasad465
      @adityaprasad465 6 лет назад +1

      We subtract the region *because* it got "removed" from the original integral (the one we're differentiating, on the LHS). We are adding the green region and blue region, and subtracting the red, to get the new integral.

    • @David24476
      @David24476 Год назад

      four years later, but thank you for the clarification!@@adityaprasad465

  • @JamesVestal-dz5qm
    @JamesVestal-dz5qm Год назад

    My dad is teaching me that computer science is easy even if you can't do math!

  • @JamesVestal-dz5qm
    @JamesVestal-dz5qm Год назад

    My dad admitted I know more about calculus than he does!

  • @pavelmihailovski8959
    @pavelmihailovski8959 8 лет назад

    Brilliant!

  • @Daniela-sy5pc
    @Daniela-sy5pc 7 лет назад

    so good!

  • @ronaldfungss
    @ronaldfungss 7 лет назад

    Thank you so much

  • @arnavdeshpande5306
    @arnavdeshpande5306 9 лет назад

    Thanks a ton!!!

  • @jithinsreekumar8943
    @jithinsreekumar8943 4 года назад

    Wow,thanks

  • @lizard1898
    @lizard1898 10 лет назад

    so useful! thanks dude :)

  • @gentlemandude1
    @gentlemandude1 4 месяца назад

    4:36 It would have been nice if you had explained the process of the expansion. It's not especially straightforward.

  • @51pulkitraj87
    @51pulkitraj87 6 лет назад

    Finally. Thanks

  • @manaoharsam4211
    @manaoharsam4211 3 года назад

    I lost interest in learning anything. Now I learn it if it makes me money and useful to others. Otherwise you can read 10 zillion books and still feel incomplete.

  • @sachinpawar8595
    @sachinpawar8595 7 лет назад

    thanks

  • @johnsenkyle13
    @johnsenkyle13 4 года назад

    It's pronounced LIEPnits. But thanks for the sweet video

    • @eternxl8893
      @eternxl8893 3 года назад

      actually its pronounced laipnits. Its a german name

    • @johnsenkyle13
      @johnsenkyle13 3 года назад +1

      @@eternxl8893 I know, we're just representing the same sound two different ways. For an English speaker, the word "lie" has the right sound.

  • @adampaul2986
    @adampaul2986 6 лет назад

    How did I get here? I feel dumb as hell :(

  • @cheoane3916
    @cheoane3916 2 года назад

    Love u

  • @何足道-y8p
    @何足道-y8p 9 лет назад

    TY HOST

  • @newkid9807
    @newkid9807 5 лет назад

    Brian stop this madness.

  • @YusufHegazy
    @YusufHegazy 6 лет назад

    .

  • @vukasinspasojevic1521
    @vukasinspasojevic1521 2 года назад

    bruka