N'oublie surtout pas de t'abonner à ma chaine RUclips. 😉 Pour avoir accès à tous les cours de ta classe en pdf, à des séries d'exercices corrigés en détails en vidéos et en texte, à des quiz pour t'évaluer et à des devoirs surveillés corrigés en détails et aussi à de l'assistance par WhatsApp, crée toi un compte sur mon site kiffelesmaths.com/
Le pire est de commencer par chercher le DOMAINE DE DÉFINITION de chacune des FONCTIONS, comme ici. Alors qu'on est face à une EQUATION qui nécessite un DOMAINE DE VALIDITÉ. L'équation: rc(x+12)=rc(x^2+2x-8) {x+12>=0 : domaine de validité x+12= x^2 +2x-8) } { x>=-12 x^2 +x -4 =0 } { x>=-12, x=-5 OU x=4 } Comme-5 >=-12 , 4>= -12 alors-5 et 4 sont bien solutions. Merci et bonne continuation.
Il y a au fait combien de types d'équations ??? Quand il y a des équations irrationnels alors il y a aussi des équations rationnelles, imaginaires, réel ????
Le pire est de commencer par chercher le DOMAINE DE DÉFINITION de chacune des FONCTIONS, comme ici. Alors qu'on est face à une EQUATION qui nécessite un DOMAINE DE VALIDITÉ. L'équation: rc(x+12)=rc(x^2+2x-8) {x+12>=0 : domaine de validité x+12= x^2 +2x-8) } { x>=-12 x^2 +x -4 =0 } { x>=-12, x=-5 OU x=4 } Comme-5 >=-12 , 4>= -12 alors-5 et 4 sont bien solutions. C'est logique, clair et net.
N'oublie surtout pas de t'abonner à ma chaine RUclips. 😉
Pour avoir accès à tous les cours de ta classe en pdf, à des séries d'exercices corrigés en détails en vidéos et en texte, à des quiz pour t'évaluer et à des devoirs surveillés corrigés en détails et aussi à de l'assistance par WhatsApp, crée toi un compte sur mon site kiffelesmaths.com/
omg j'ai jamais vus une vidéo aussi clair, vraiment ce que javais besoin merci beaucop
Vous expliquez tres rapidement
Mais très très bien 👌🏾👌🏾👌🏾👌🏾👌🏾👌🏾
j'ai l'impression de tromper yvan
Le pire est de commencer par chercher le DOMAINE DE DÉFINITION de chacune des FONCTIONS, comme ici.
Alors qu'on est face à une EQUATION qui nécessite un DOMAINE DE VALIDITÉ.
L'équation:
rc(x+12)=rc(x^2+2x-8)
{x+12>=0 : domaine de validité
x+12= x^2 +2x-8) }
{ x>=-12
x^2 +x -4 =0 }
{ x>=-12,
x=-5 OU x=4 }
Comme-5 >=-12 , 4>= -12 alors-5 et 4 sont bien solutions.
Merci et bonne continuation.
A la dernière équation :
Lire ' x^2+x-20=0 '
Les solutions sont donc bien-5 et 4.
merci beaucoup monsieur pour cette explication plus que claire !!
Merci beaucoup
Merci
Très bien expliqué
Il y a au fait combien de types d'équations ??? Quand il y a des équations irrationnels alors il y a aussi des équations rationnelles, imaginaires, réel ????
il y'a des familles d'équations. dans cette vidéo, on apprend à résoudre un certain type d'équation.
Vous allez trop vite
Mercii
video excellente
C'est plutôt {-5;4}
je m'appelle Joe. J'aimerais savoir comment devenir meilleur en maths s'il vous plaît
En travaillant avec méthodologie et de manière constante. Le travail finit toujours par payer !
le pire quand t'as une équation second degré avec une fraction et des racines!
Le pire est de commencer par chercher le DOMAINE DE DÉFINITION de chacune des FONCTIONS, comme ici.
Alors qu'on est face à une EQUATION qui nécessite un DOMAINE DE VALIDITÉ.
L'équation:
rc(x+12)=rc(x^2+2x-8)
{x+12>=0 : domaine de validité
x+12= x^2 +2x-8) }
{ x>=-12
x^2 +x -4 =0 }
{ x>=-12,
x=-5 OU x=4 }
Comme-5 >=-12 , 4>= -12 alors-5 et 4 sont bien solutions.
C'est logique, clair et net.
c'est pas -1-racine de delta au niveau de la deuxième méthode la
Doucement oh c'est comment
Cchyuuu
Vous parlez trop vite.....