Galois theory: Normal extensions

Поделиться
HTML-код
  • Опубликовано: 17 дек 2024

Комментарии • 18

  • @shubhmishra66
    @shubhmishra66 4 года назад +6

    Thanks for sharing the knowledge!

  • @aa-lr1jk
    @aa-lr1jk 4 года назад +6

    Happy new year, my good sir.

  • @ching-tsunchou2655
    @ching-tsunchou2655 3 года назад +9

    In the proof of (3) => (1) (around 8:30), the statement of (3) seems not quite correct: the automorphism does not really "fix L", but merely maps L to L. Correct? "Fixing L" would mean that the automorphism maps each element of L to itself, which is not what is stated at the beginning or proved in (2) => (3).

    • @Brien831
      @Brien831 3 года назад +10

      he addresses this at 16:00. Fixing L just means that sigma(L)=L.

  • @hassaannaeem4374
    @hassaannaeem4374 2 года назад +1

    Great breakdown. thanks!

  • @clareliao3080
    @clareliao3080 4 года назад +2

    Happy new year!

  • @pupfer
    @pupfer 4 месяца назад +1

    Galois: let's call these extenstions normal
    Gauss: :(

  • @staj6236
    @staj6236 4 года назад +3

    Happy New YEAR

  • @137mathe
    @137mathe 4 года назад +1

    Happy new year Sir

  • @big-lion
    @big-lion Год назад

    For (1)->(2), what guarantees that there is a p_α in K[x] for any α in L?

    • @David-mu1eh
      @David-mu1eh Год назад +3

      The definition of an algebraic extension K < L says, that for each a in L there has to be a p_a(x) ≠ 0 in K[x], such that p_a(a) = 0. (i.e. every element in L is algebraic over K). Of course, you can choose those p_a to be irreducible. I hope this helped.

  • @f5673-t1h
    @f5673-t1h 4 года назад +4

    Early for the first time

  • @الأستاذنورالدينمداجلية

    Exercices pls

  • @hausdorffm
    @hausdorffm 3 года назад

    Definition of splitting fields for a “set of” polynomials is in lecture of algebraic closure. Now, I do not watch it.