Math Olympiad | Can you find the Blue region area? | (Step-by-step explanation) |

Поделиться
HTML-код
  • Опубликовано: 17 ноя 2024

Комментарии • 62

  • @walcholjacob4259
    @walcholjacob4259 Год назад +3

    Nice one

    • @PreMath
      @PreMath  Год назад

      Thanks for watching
      You are awesome. Keep it up 👍

  • @marioalb9726
    @marioalb9726 Год назад +4

    Radius of circle:
    r = R cos 45° = 8 / √2 = √32
    r = 5,657 cm
    Area circle :
    A = πr² = 32π cm²
    Area circular segment:
    A₂ = ½ R² (α - sin α)
    A₂ = ½ 8² (π/2- sin π/2 )
    A₂ = 32 (π/2- 1)= 16π - 32
    A₂ = 18,2655 cm²
    Blue shaded area :
    A₁ = ½ A - A₂
    A₁ = 16π - (16π - 32)
    A₁ = 32 cm² ( Solved √ )

  • @marioalb9726
    @marioalb9726 Год назад +2

    Everytime we have this configuration:
    Blue shaded area = Radius²
    A = r²
    A = (8 cos45°)² = ( 8 / √2 )²
    A = 8² / 2
    A = 32 cm² ( Solved √ )

  • @marioalb9726
    @marioalb9726 Год назад +2

    Radius of circle:
    r = R cos 45° = 8 / √2 = √32
    r = 5,657 cm
    Area circle :
    A = πr² = 32π cm²
    Area quarter circle:
    A₁ = ¼ π R² = ¼ π 8²
    A₁ = 16π cm²
    Area circular segment:
    A₂ = ½ r² (α - sin α)
    A₂ = ½ 32 (π/2- sin π/2 )
    A₂ = 16 (π/2- 1)= 8π - 16
    A₂ = 9,1327 cm²
    Blue shaded area :
    A₃ = A - A₁ - 2. A₂
    A₃ = 32π - 16π - 2. 9,1327
    A₃ = 32 cm² ( Solved √ )

  • @marioalb9726
    @marioalb9726 Год назад +2

    Being R the radius of quarter circle.
    Everytime we have this configuration:
    Blue shaded area = ½ R²
    A = ½ 8² = 32 cm² ( Solved √ )

  • @murdock5537
    @murdock5537 Год назад +1

    Nice! 16π - 16(π - 2) - the "Lune of Hippocrates"... 🙂

  • @marioalb9726
    @marioalb9726 Год назад +2

    Everytime we have this configuration:
    Blue shaded area = Triangle area
    A = ½ b.h = ½ 8²
    A = 32 cm² ( Solved √ )

  • @SpokeSeadog
    @SpokeSeadog Год назад +1

    AC is a diameter, so D= r sqrt 2.
    AB is the radius of the quarter circle inscribed (ABC), so r = 8.
    A=Area of the full circle (center O, radius D/2). pi D^2/4 = pi r^2/2
    A2=Area of the quarter circle is pi r^2/4 = A/2
    A3=Area of the half circle AOC is half of full circle, or pi r^2/2 = A/2
    The overlap between A2 and A3 is the area of the right triangle of side r.
    A4 = Area of triangle = r^2/2
    BA= Blue area
    A = A2 + A3 - A4 + BA
    = A/2 + A/2 - A4 + BA
    BA = A4 = r^2/2 = 64/2 = 32

    • @PreMath
      @PreMath  Год назад

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @lifeisamarathon2098
    @lifeisamarathon2098 Год назад +2

    another method
    we have circle with radius 8 so this area is (8X8 pi)/4
    remaining two small congruent parts can be calculated as (area of circle of radius 4 root 2 - area of square formed with side 8 unit) X 2.........since that angle is 90 so joining A and C will give us diagonal....and hence we can imagine a square to find the area of segment
    now we got all the areas then subtract it from the original circle and and is 32

    • @PreMath
      @PreMath  Год назад +1

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @sorourhashemi3249
    @sorourhashemi3249 5 месяцев назад

    I connected A to C and AC ( diameter of large circle) according to Pythagoras theory is 11.313 . so radius is 5.656. The area of large circle= 100.45÷2=50.225. The area of triangle ABC =32==>the area of segmental circle=50.24. So 50.24-32=18.24 and the area of blue shaded region is 50.225-18.24=31.985.

  • @marioalb9726
    @marioalb9726 Год назад +2

    Everytime we have this configuration:
    Blue shaded area = 1/π Area circle
    Radius of circle:
    r = R cos 45° = 8 / √2 =
    r = √32 cm
    Area of circle :
    A = πr² = 32π cm²
    Blue shaded area :
    A₁ = 1/π x A = 1/π x 32π
    A₁ = 32 cm²

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @parthtomar6987
    @parthtomar6987 Год назад +2

    Nice trick

    • @PreMath
      @PreMath  Год назад +1

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @jacquespictet5363
    @jacquespictet5363 3 месяца назад

    You could perhaps generalize to the case of a quarter-circle placed anywhere in a circle.

  • @devondevon4366
    @devondevon4366 Год назад +1

    32
    The radius of the circle: sqrt (4^2 + 4^2) [Pythagorean]
    sqrt ( 32)
    The area of the circle 32 pi [pi r^2]
    Draw a right angle to complete an 8 by 8 square
    The area of this square is 64
    The area not covered by the square = 32 pi - 64
    Hence the area of each segment (32pi - 64)/4
    Since two are unshaded, the area of those two is (32pi -64)/4 *2 = 32 pi - 64)/2 = 16 pi -32
    Since the next unshaded area is the quarter circle, its area is 16 pi ( 64 pi /4)
    Hence the area of the SHADED area is 32 pi - (16 pi - 32) + 16 pi
    16 pi - [ 16 pi - 32 ]
    16 pi - 16 pi + 32
    32 Answer

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @JLvatron
    @JLvatron Год назад

    Wow, I solved it in my head!
    (I’ve seen the trick over the years)

  • @wackojacko3962
    @wackojacko3962 Год назад

    Thales Flat Earth floating on water....when Pythagoras showed up , he took Thales "know thyself" to the extreme!
    Quadricircle BCA is nice and neat with radius = 8. Redo this problem with Inscribed 3 4 5 triangle. It's more fun! 🙂

  • @misterenter-iz7rz
    @misterenter-iz7rz Год назад +4

    Note that the radius of the oitside circle is 4root2 and AOC is a diameter, therefore the answer is 16pi-(64pi/4-64/2)=32.😊

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

    • @misterenter-iz7rz
      @misterenter-iz7rz Год назад

      @@PreMath respond in deadly painful in my left knee, maynot I can continue my participation in premath in future😪.

    • @PreMath
      @PreMath  Год назад +1

      @@misterenter-iz7rz
      No worries!
      Your health is more important. You are always in our thoughts and prayers. 🙏

  • @AmirgabYT2185
    @AmirgabYT2185 9 месяцев назад +1

    S=32

  • @MarieAnne.
    @MarieAnne. Год назад

    Diameter of circle: AC = √(8^2 + 8^2) = 8√2 → Radius = 4√2
    Radius of quarter circle = 8
    Area of blue region
    = Area of semi-circle (with radius 4√2) − (Area of quarter circle (with radius 8) − Area of △ABC)
    = Area of semi-circle (with radius 4√2) + Area of △ABC − Area of quarter circle (with radius 8)
    = 1/2 × π(4√2)² + 1/2 × (8 × 8) − 1/4 × π(8)²
    = 16π + 32 − 16π
    = 32

  • @dirklutz2818
    @dirklutz2818 Год назад

    Very nice! And surpising that there is no PI in the solution.

  • @klementhajrullaj1222
    @klementhajrullaj1222 Год назад +3

    The area of "moony" it's equal with area of triangle! 😀😉

    • @PreMath
      @PreMath  Год назад

      Very true!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад +1

    Ablue=(pi(sqrt32)^2)/2-(pi8^2/4-8*8/2)=32

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @KAvi_YA666
    @KAvi_YA666 Год назад +1

    Thanks for video.Good luck sir!!!!!!!°

    • @PreMath
      @PreMath  Год назад +1

      So nice of you, dear❤️

  • @Saxysaboy77
    @Saxysaboy77 Год назад +2

    I got it! I feel proud!

    • @PreMath
      @PreMath  Год назад

      Bravo!
      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @soniamariadasilveira7003
    @soniamariadasilveira7003 Год назад +1

    • @PreMath
      @PreMath  Год назад +1

      Thank you, dear! Cheers! 😀
      You are awesome. Keep it up 👍

  • @bigm383
    @bigm383 Год назад +1

    ❤😁👍

    • @PreMath
      @PreMath  Год назад +1

      Excellent!
      Thank you! Cheers! 😀
      You are awesome. Keep it up 👍

  • @octavianmitrea6449
    @octavianmitrea6449 Год назад +2

    Just my opinion: this is not olimpiad level, not even for a regional olympiad. It is very suitable for an end of semester (or trimester, what have you) test. Depending on the country, grades 7-8 in mid-school, or maybe first year high schoo (not higher). Thanks for the post 👍

  • @jarikosonen4079
    @jarikosonen4079 Год назад +2

    It looks like the π disappearing in the round type area...

    • @PreMath
      @PreMath  Год назад

      Yes, you are right
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @fppro1679
    @fppro1679 Год назад +1

    If I take the length of the angle at 8, Make the diameter 16, square it, then x .7854 = 201 x .25= the area you're looking for.(50.56?)

    • @PreMath
      @PreMath  Год назад

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

    • @fppro1679
      @fppro1679 Год назад

      @@PreMath thanks. I sold hydraulic cylinders for 35 years. Area of a circles burned into my brain.

  • @soli9mana-soli4953
    @soli9mana-soli4953 Год назад

    This is the lune of Hippocrates, Prof, wellknown solution

  • @MegaSuperEnrique
    @MegaSuperEnrique Год назад +1

    Curious to me that a moon shape has arcs of circles for both sides, the area does not involve pi.

    • @PreMath
      @PreMath  Год назад

      Excellent!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @ybodoN
    @ybodoN Год назад +3

    This problem is over 2400 years old and is known as the *lune of Hippocrates* 😉

    • @PreMath
      @PreMath  Год назад

      Amazing!
      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @batavuskoga
    @batavuskoga Год назад

    I could also solve this math problem, but my way is much more complicated than yours 😅
    radius of the big circle = R, radius of the quarter circle = r = 8
    draw a line from the midpoint of AB to the midpoint of BC, you will have a triangle with a 90°angle at point B
    R²=4²+4²=32 --> R²=32
    area big circle=32π
    area quarter circle=π*r²/4=16π
    draw a square : from point A a vertical line, from point C a horizontal line
    the blue region is now divided in three parts, two parts are equal to the parts of the circle, below the line AB and at the right of line BC
    let's these parts be A1 = (area big circle-area square)/4=(32π-64)/4
    A1=8π-16
    area blue region=area big circle-area quarter circle-2*A1
    area blue region=32π-16π-2*(8π-16)=32π-16π-16π+32
    area blue region=32

  • @akshatsharma6459
    @akshatsharma6459 Год назад

    What grade math is it?

  • @SIDDHARTHMOHAPATRA-n1e
    @SIDDHARTHMOHAPATRA-n1e Год назад +2

    Easy peezy

    • @PreMath
      @PreMath  Год назад

      Thanks for your feedback! Cheers! 😀
      You are awesome. Keep it up 👍

  • @athiran5856
    @athiran5856 Год назад

    Wait around 4:39, how did he know that the area is quarter circle?

    • @MegaSuperEnrique
      @MegaSuperEnrique Год назад +2

      That was the given at the beginning, quarter circle with center at B.

  • @JSSTyger
    @JSSTyger Год назад +1

    I think the answer is 32

    • @PreMath
      @PreMath  Год назад

      Thanks for sharing! Cheers!
      You are awesome. Keep it up 👍

  • @张建-w5d
    @张建-w5d Год назад

    连接ac就一定过o点??这题目出的???

  • @txt.myhome7979
    @txt.myhome7979 Год назад

    This was not that hard