A Nice Geometry Problem | Find the side lengths of the triangle

Поделиться
HTML-код
  • Опубликовано: 18 ноя 2024

Комментарии • 51

  • @DATR01
    @DATR01 7 месяцев назад +1

    My preferred solution is.
    Substitute c=126-(a+b) into pythagoras and this gives a+b=73
    This then gives c=53
    Use (a-b)^2=(a+b)^2-4ab to find a-b=17
    Then solve for a and b.
    This method avoids the factorisation of 1260.

    • @mohanramachandran4550
      @mohanramachandran4550 Месяц назад

      This method is simple and easy to understand anybody
      (a+b) ² - 4 ab = (a-b)²

  • @jim2376
    @jim2376 11 месяцев назад +1

    Sides a and b and hypotenuse c where b < a
    1. 1260 = ab
    2. a + b + c = 126
    3. a^2 + b^2 = c^2
    Solve system of equations using substitution and quadratic equation. a = 45, b = 28, c = 53.
    Check: 45 + 28 + 53 = 126.
    Check: (45 x 28)/2 = 630
    The tricky bit is the substitutions.

  • @WahranRai
    @WahranRai 11 месяцев назад +7

    It is customary to name the sides of a triangle with the small letter opposite the corresponding vertex: a in front of A, b in front of B, c in front of C

  • @samarpalsingh6222
    @samarpalsingh6222 11 месяцев назад +2

    Sir, no need to find roots of quadratic equation
    (a+b)=73.......(I)
    (a-b)= 17.........(I)
    by adding a=45 ,b= 28

  • @rcnayak_58
    @rcnayak_58 9 месяцев назад +1

    Sometimes when ab is a large number and has more factors involved, it is time consuming to find the exact pair which adds up the required value (a + b). In this case, we can use another way (algebraic formulae) to solve it. We have a + b = 73 and ab = 1260. Now (a - b)² = (a + b)² - 4ab = 73² - 4.1260 = 289. This gives (a - b) = 17. Now a = (73 + 17)/2 = 45 and b = (73 - 17)/2 = 28.

  • @soli9mana-soli4953
    @soli9mana-soli4953 11 месяцев назад +6

    I've found a different solution. Known that in a generic triangle the radius of the inscribed circle is:
    r = A/P where A is the area and P the semiperimeter (126/2 = 63) we can easily find:
    r = 630/63 = 10
    But we know that the same radius in a right triangle is:
    r = (a + b - c)/2
    so we have:
    1) a + b + c = 126 (perimeter)
    2) a + b - c = 20 (diameter inscribed circle)
    sum 1) + 2) then
    a + b = 73
    a*b = 1260 (2*area triangle)
    now we have different way but we can solve this:
    X² - (sum) X + (product) = 0
    X² - 73X + 1260 = 0
    getting: a = 28, b = 45 c = 126 - a - b = 126 - 45 - 28 = 53

    • @Chocolate12-m9n
      @Chocolate12-m9n 11 месяцев назад

      I think a=45 cause the BC>AB and b=28

    • @soli9mana-soli4953
      @soli9mana-soli4953 11 месяцев назад +1

      @@Chocolate12-m9n Yes maybe, but consider that you have only a text and the only data are area and perimeter... so we could draw the triangle in a different way

    • @Chocolate12-m9n
      @Chocolate12-m9n 11 месяцев назад

      @@soli9mana-soli4953 of course

  • @piman9280
    @piman9280 11 месяцев назад +1

    Since area = rs and s = 63, then 63r = 630 => r = 10 = 5 x 2.
    Now, if we set up a fibonacci sequence 5,2,7,9 and form the fundamental pythagorean triple with legs
    5 x 9 and 2(2 x 7) and hypotenuse 2^2 + 7^2 (where r = 5 x 2), then the sides are 45, 28, and 53.

  • @zephyr93
    @zephyr93 10 месяцев назад

    Катеты 28 45, гипотенуза 53
    Умножаем площадь в два раза, и по теореме Виета методом подбора получаем один катет 45, следовательно другой 28
    И теоремой пифагора находим гипотенузу и подтверждаем периметром

  • @jim2376
    @jim2376 11 месяцев назад

    Alternate method: factor 1260. 4, 5, 7, 9. Combinations (20, 63), (28, 45), (35, 36). Plug into the Pythagorean formula. Only (28, 45) results in an integer solution. 126 - (28 + 45) = 53.

  • @honestadministrator
    @honestadministrator 11 месяцев назад +1

    Herein a + b + √ ( a^2 + b^2) = p
    a b = 2 A
    Hereby
    a + b - √ ( a^2 + b^2)
    = (a + b) ^2 - (a^2 + b^2)
    / [ a + b + √ ( a^2 + b^2) ]
    = 2 a b / / [ a + b + √ ( a^2 + b^2) ]
    = 4 A / p
    Hereby a + b = 2 A / p + p /2
    √( a^2 + b^2) = - 2 A / p + p/2
    and so forth

  • @paparmar
    @paparmar 10 месяцев назад

    A property of right triangles is the relationship between the side lengths, the perimeter P and the area A:
    hypothenuse c = (P^2 - 4A)/2P
    a,b = 0.5 * {(P-c) +/- SQRT[(P-c)^2 - 8A]}
    In this particular example, P = 126, A = 630 --> c = 53, a and b = 28 and 45
    Note these formulae don't require the quantities being integers.

  • @datmeme8967
    @datmeme8967 6 месяцев назад

    What did the sycamore say to the triangle?
    "Gee, I'm a tree."

  • @Kasual_1
    @Kasual_1 10 месяцев назад

    I saw the thumbnail and wanted to try this problem, I’m in 8th grade so the method I used might not be as good or straight forward but it lead me to the right answer so here’s what I did
    Eq. 1 a+b+c=126
    Eq. 2 (1/2)(ab)=630
    Eq. 3 a^2 + b^2 = c^2
    In Eq. 2 by multiplying both sides by 2 I got:
    ab=1260
    In Eq. 3 by square rooting both sides I got:
    C=Sqrt(a^2+b^2)
    I substitute that C value in to Eq. 1 giving me:
    a+b+sqrt(a^2+b^2)=126
    Then I subtracted a and b from both sides then squared both sides leaving me with:
    a^2+b^2=(-a-b+126)^2
    Foiling the right side left me with:
    a^2+b^2=a^2+b^2+2ab-252(a+b)+15876
    I then substituted the ab value from Eq. 2 which was ab=1260
    a^2+b^2=a^2+b^2+2520-252(a+b)+15876
    Combining the constant terms left me with:
    a^2+b^2=a^2+b^2 -252(a+b) + 18396
    If a^2+b^2=a^2+b^2 + t (any expression) then t has to equal zero
    I set -252(a+b)+18396=0
    Subtracting 18396 from both sides left me with:
    -252(a+b)=-18396
    Dividing both sides by -252 gave me the expression “(a+b)=73”
    Substituting 73 for (a+b) in Eq. 1 gave me:
    73+c=126
    After subtracting 73 on both sides I had found the hypotenuse of the triangle which was 53
    Now I set up a system of equations using:
    Eq. 1 [a+b=73]
    Eq.2 [ab=1260]
    In Eq. 2 dividing a on both sides gave me:
    b=1260/a
    I substituted b=1260/a into Eq. 1 which gave me:
    a+1260/a=73
    I multiplied a on both sides to give me a^2+1260=73a
    I then moved the 73a to left so I could use the quadratic formula in terms of a:
    a^2-73a+1260=0
    After plugging in 1, -73, and 1260 into the quadratic formula I got:
    A = (73 plus or minus sqrt(289))/2
    Simplifying the radical gave me (73 plus or minus 17)/2
    I then had A=90/2, A=56/2
    Simplifying them further I had gotten:
    A=45, A=28
    I substituted A=45 into Eq. 1 and got:
    45+b=73
    Subtracting 45 on both sides gave me b=23.
    I checked by plugging in A=45, B=23, and C=53 into the original 3 equations and all of them checked out

    • @DATR01
      @DATR01 7 месяцев назад

      It is good that you got the solution, but as you say it isn't the best method. I would substitute c=126-(a+b) into pythagoras. To find a+b.
      Also, don't square 126, keep it as 126x126 and don't double 126 keep it as 2x126, then cancel as demonstrated in the video, this avoids large numbers and factorisation.
      Consider (4x10)/2 =40/2=20 this is bad. (4×10)/2=2×10 =20 is much better.
      If you expand you are going to have to factorise later. So wait and see if you can cancel, which you can in this problem.

  • @AbhishekSwarupSrivastava
    @AbhishekSwarupSrivastava 10 месяцев назад

    45, 28, 53
    Using eq. (i) and (ii) we get c=53,, then find a+b and a-b finally giving a=45 and b=28

  • @skwest
    @skwest 11 месяцев назад +2

    Got it! (Almost gave up...)

  • @saayy_zerohate6982
    @saayy_zerohate6982 9 месяцев назад

    Using three equation , the length of sides will s1=45 s2= 28 & s3=53 .

  • @Irtsak
    @Irtsak 8 месяцев назад

    Nice solution . In Greece we use Vieta's theory .(RIP)

  • @md.mostafa5216
    @md.mostafa5216 10 месяцев назад

    Thanks.

  • @niceboiiz
    @niceboiiz 6 месяцев назад

    Bro, in the question u saw that BC is greater than AB so the answer is {a,b,c}={45,23,53} and another answer also has probabilities but not.

  • @luizverdecanna8023
    @luizverdecanna8023 11 месяцев назад

    Alternate :
    b.a/2 = 630
    a + b + c = 126
    c sq = a sq + b sq

  • @jarikosonen4079
    @jarikosonen4079 11 месяцев назад +1

    Works well, but can not answer which on the shortest leg. :)

  • @geetavansiya3376
    @geetavansiya3376 10 месяцев назад +1

    Use area = =square root is s(s-a)(s-b)(s-c(

    • @hsi2020
      @hsi2020 10 месяцев назад

      Yes, Heron's Formula.
      There is no need to reinvent the wheel.

  • @charlesla47
    @charlesla47 11 месяцев назад

    Como lo haces en terreno??

  • @claudeabraham2347
    @claudeabraham2347 10 месяцев назад

    I love it!

  • @alamshaikhahmad2415
    @alamshaikhahmad2415 8 месяцев назад

    45+28+53=126)(45×26=1260÷2=630

  • @sergeyvinns931
    @sergeyvinns931 10 месяцев назад

    a=45, b=28, c=53!

  • @nabilmusleh5304
    @nabilmusleh5304 9 месяцев назад

    a=45 b=28 c=53

  • @venkateswarluchameeru7011
    @venkateswarluchameeru7011 10 месяцев назад

    length of AB is c. not by b

  • @alster724
    @alster724 9 месяцев назад

    Easy!!!

  • @rajendrajha4058
    @rajendrajha4058 8 месяцев назад

    However once pythogorean triplet this sum can in no time be solved why such a long process.

  • @AdamacheCristi
    @AdamacheCristi 10 месяцев назад

    45,28,53

  • @charlesla47
    @charlesla47 11 месяцев назад

    solo que es muy largo!!!

  • @cagacucar4293
    @cagacucar4293 11 месяцев назад

    30,42,54

    • @rabotaakk-nw9nm
      @rabotaakk-nw9nm 10 месяцев назад

      c=sqrt(30^2+42^2)≈51.6≠54 🤣
      => Heron :
      A=sqrt(63×33×21×9)≈626.8≠630 😂👎

  • @JPTaquari
    @JPTaquari 11 месяцев назад

    Herr professor, I tried to find the three sides of triangles using equations, but, I confess, I couldn't.
    Then I moved on to the arm:
    If the area of ​​the triangle is 630 area units, then the area of ​​the rectangle will be double, 1,260
    a * b = 1260
    Then I decomposed these 1260 finding: 2² * 3² * 5¹ * 7¹
    Then it became easy,
    I tried 4 * 315 - it doesn't work;
    9 * 140, it doesn't work;
    35 * 36, almost gave;
    45 + 28, bingo C = 53
    28² + 45² = C²
    C = 53 !!!!! Bingo

  • @guerrino50
    @guerrino50 9 месяцев назад

    A me risulta a=42 b =30 c=54

    • @DATR01
      @DATR01 7 месяцев назад

      This answer doesn't satisfy pythagoras theorem. It is obviously incorrect since a^2+b^2 ends with a 4 and c^2 ends with a 6.

  • @venkateswarluchameeru7011
    @venkateswarluchameeru7011 10 месяцев назад

    process ok

  • @peterviegas3815
    @peterviegas3815 9 месяцев назад

    Long method.

  • @elieazar9383
    @elieazar9383 10 месяцев назад

    Calcul tres lent🤤

  • @elieazar9383
    @elieazar9383 10 месяцев назад

    Second degre

  • @alamshaikhahmad2415
    @alamshaikhahmad2415 8 месяцев назад

    Du yoù naw math weri long ut ansawar

  • @giuseppelucianoferrero8916
    @giuseppelucianoferrero8916 9 месяцев назад

    ✍prof.(eccellente soluzione )
    Esisterebbe a mio avviso tuttavia questa scorciatoia che le propongo.
    °) scompongo in fattori →⇒1260= (2^2)*(3^2)*(5)*(7) dove; 2-3-5-7 ; sono NP.
    Essi offrono queste combinazioni⇒ 4*9= 36 ed ⇒ 5*7=35 dove 35*36=1260 tuttavia alla verifica di
    a^2+b^2 ≄c^2 e quindi 35^2+36^2= 2521 la cui radice vale ⇒√2521 ≃50,2< 53 .
    quindi si considera l'altra coppia di numeri ⇒ (3^2)*5=45 ed (2^2)*7= 28 che risolvono il problema; infatti
    28^2+45^2=784+2025=2809 ⇒√2809= 2809^(1/2)=(53^2)^1/2= 53⇒ OK
    Coppia di numeri ; 28 e 45
    Inoltre poiché s'intravede il teorema del coseno ecco che scriverei che At= c*(b* cos𝛃)*co𝝿/3=
    =53(45*0,5283)0,5= 53*23,775*0,5≃630 dove 23,775 = h(altezza triangolo rispetto al diametro-ipotenusa (c).
    Prof.(complimenti) non avevo mai trovato un problema così .
    Cordialità😌
    li, 1 febbraio 2024⏳

  • @ravindrababu1430
    @ravindrababu1430 10 месяцев назад

    28,45,53