Feature Selection Techniques Explained with Examples in Hindi ll Machine Learning Course

Поделиться
HTML-код
  • Опубликовано: 14 дек 2024

Комментарии • 173

  • @heenarupabheda6021
    @heenarupabheda6021 4 года назад +23

    That line "Aaj ka video bahut hi kamal ka hone wala hai"..😄
    Sir aapka har video kamal ka hota hai..😀

  • @bhavikdudhrejiya852
    @bhavikdudhrejiya852 3 года назад +68

    This are the comprehensive list of various feature selection
    1. Filter Methods
    A. Basic Filter Method
    1. Constant Features
    2. Quasi Constant Features
    3. Duplicate Features
    B. Correlation Filter Methods
    1. Pearson Correlation Coefficient
    2. Spearman's Rank Corr Coef
    3. Kendall's Rank Corr Coef
    C. Statistical & Ranking Filter Methods
    1. Mutual Information
    2. Chi Square Score
    3. ANOVA Univariate
    4. Univariate ROC-AUC / RMSE
    ------------------------------------------------------------------------
    2. Wrapper Methods
    A. Search Methods
    1. Forward Feature Selection
    2. Backward Feature Elimination
    3. Exhaustive Feature Selection
    B. Sequential Floating
    1. Step Floating Forward Selection
    2. Step Floating Backward Selection
    C. Other Search
    1. Bidirectional Search
    ------------------------------------------------------------------------
    3. Embedded Methods
    A. Regularization
    1. LASSO
    2. Ridge
    3. Elastic Nets
    B. Tree Based Importance
    1. Feature Importance
    ------------------------------------------------------------------------
    4. Hybrid Method
    A. Filter & Wrapper Methods
    B. Embedded & Wrapper Methods
    1. Recursive Feature Elimination
    2. Recursive Feature Addition
    ------------------------------------------------------------------------
    5. Advanced Methods
    A. Dimensionality Reduction
    1. PCA
    2. LDA
    B. Heuristic Search Algorithms
    1. Genetic Algorithm
    C. Feature Importance
    1. Permutation Importance
    D. Deep Learning
    1. Autoencoders
    ------------------------------------------------------------------------

    • @ravishankar2180
      @ravishankar2180 3 года назад +7

      main topic : Dimesionality Analysis
      type : 1. feature selection 2. feature extraction
      1 - 4 : feature selection (here we just eliminate the features based on analysis)
      5 : feature extraction (here we combine two or more features )

    • @manasmore8893
      @manasmore8893 Год назад

      prime example of over-fitting

  • @humancodex
    @humancodex 5 лет назад +12

    Vai Real engineer ho, salute.

  • @tanvisshah26
    @tanvisshah26 3 года назад +141

    Watched you when I did my Bachelor's, watching you now when I'm doing my Master's!

  • @shrunkhalshahane3323
    @shrunkhalshahane3323 7 месяцев назад

    00:01 Feature selection techniques are crucial for attribute selection.
    01:35 Feature selection techniques are essential for optimizing machine learning models.
    03:15 Feature dependency and correlation
    04:52 Correlation between attributes and the target variable is important for feature selection
    06:27 Feature selection techniques include recursive feature elimination and genetic algorithm.
    08:03 Feature selection helps in generating multiple models with different feature subsets.
    09:48 Feature selection is important for machine learning model building.
    11:29 Feature selection techniques help in reducing computational expenses and avoiding overfitting.
    Crafted by Merlin AI.

  • @sadaqathussain1310
    @sadaqathussain1310 2 года назад

    Waah.. Kamal Krdia Sir g, behtreen. Is se se asan koi tariqa shayd koi nhe hoga beginners ko smjhany ka. Thankyou

  • @akshayjadhav3004
    @akshayjadhav3004 2 года назад +3

    Got my B.E. Result Today with Distinction.. Thank you so much sirjii for such smooth Teaching..😍

  • @Admin_REX
    @Admin_REX Год назад +1

    aree sir ji thanks i will comment after todays paper >>>>>>>>>

  • @bhavikdudhrejiya4478
    @bhavikdudhrejiya4478 5 лет назад +3

    Nice way to explained.
    Learning points:
    1. What is feature selection?
    2. Why We require feature selection?
    3. Why this model has low efficiency?
    4. Optimal selection of the feature
    5. Techniques of Feature Selection
    a. Filter Methods: 1.IG 2. Chi-Square Test 3. Correlation Coefficient
    b. Wrapper Methods: 1. Recursive Feature Elimination 2. Genetic Algorithm
    c. Embedded Methods: Decision Trees
    6. General Version of Filter Methods
    7. General Version of Wrapper Methods and Embedded Method
    8. What is wrapping?
    9. Generate multiple models with a different subset of features
    10.Difference Between Wrapper Methods and Embedded methods
    11. Advantage and Disadvantages

  • @41abhishek
    @41abhishek 5 лет назад +8

    Excellent tutorial.
    But, regarding embedded method.. (as per my understanding) the algorithm itself filter the unimportant feature. The best example is regularization.
    Ridge and Lasso regularization in liner regression remove or vanish the unimportant feature coefficient (As their coefficient is already low and after applying regularization it will become zero).

  • @alirauf9022
    @alirauf9022 5 лет назад +1

    Aik dam baraber bhaiyya, Aik dam baraber.

  • @randomperson7009
    @randomperson7009 2 года назад

    Only 4 words: You are the BEST.

  • @sam9620
    @sam9620 4 года назад

    The best channel i have found so far for my data mining course. 100/100

  • @mehulsoni2300
    @mehulsoni2300 4 года назад

    jabardast bhai...thanks to teach in interacive way....kamaaal ka enthusiasm he apka

  • @rahulchadar9096
    @rahulchadar9096 5 лет назад +2

    Sir ji itne dino se kaha the aap ab to Engineering bhi khatam hone wali h ,,, pahle hi mil jate 👍👍

  • @mohammadsaif3677
    @mohammadsaif3677 4 года назад +1

    Your explanation delivery is too good... people connect with u ... Good stuff mate.

  • @mdriadulhasan5777
    @mdriadulhasan5777 2 года назад +1

    Excellent tutorial

  • @Theiteducation2015
    @Theiteducation2015 2 года назад

    Excellent.. one.. this is first video ... i saw.. and it 100% give me understandings...

  • @devotion_surya3741
    @devotion_surya3741 3 года назад

    Watching this video before exam , its very much helpful

  • @jeelpanchal6653
    @jeelpanchal6653 Год назад +1

    Make a video on Feature Extraction Method with Examples

  • @WondersOfWandering
    @WondersOfWandering 3 года назад +2

    Such interesting videos on topic which i was finding difficult to understand and boring earlier. Now, able to understand it in just a span of 5-10 minutes in the most easy and interesting manner.
    Thank you so much!!!

  • @poojabijlani78
    @poojabijlani78 2 года назад

    Sir your explanation giving deep learning of ML Thankuuuuuuu

  • @puspitachatterjee4595
    @puspitachatterjee4595 4 года назад +1

    Bhaiya, aap GridSearchCV..... confusion matrix ke upar kuch video banake dijiye please... I am your subscriber.

  • @tanveergulzar4715
    @tanveergulzar4715 2 года назад

    I think out of 3.80 lakh subscribers,3.70 lakh subscribers are the ones who study one day before the exam😂😂😂.You are a genius.Thank you .

  • @hemantkumardas3333
    @hemantkumardas3333 Год назад

    Very Nicely Explaining Sir...

  • @Experts_Experience
    @Experts_Experience 2 года назад +4

    studying Machine learning from rohit sharma

  • @yeshuip
    @yeshuip 4 года назад

    bhai you deserve more subscribers

  • @ppuppu1172
    @ppuppu1172 4 года назад

    Your explanation is very easy to understand...

  • @santoshsahu-oy5vo
    @santoshsahu-oy5vo 10 месяцев назад

    Really amazing dear...
    Thanks a lot for your dedication...
    Really it is appreciable!!!

  • @aishwarya8078
    @aishwarya8078 2 года назад

    What an explanation... Hats off

  • @rohitthareja1019
    @rohitthareja1019 5 лет назад +3

    Awesome explanation!

  • @sonu-mb3nh
    @sonu-mb3nh Год назад

    Best explanation sir... Great 🎉❤

  • @muktadhopeshwarkar5687
    @muktadhopeshwarkar5687 3 года назад

    Very nice explanation.. In a very easy manner..

  • @maxpayne880
    @maxpayne880 5 лет назад +6

    Sir just once do AES and DES encryption

  • @MrAyandebnath
    @MrAyandebnath 5 лет назад +6

    Very nice explanation..short and compact..i love the way u make us understand...I am so happy after watching your video that
    I subscribed your channel to learn more from you

  • @Rana2058
    @Rana2058 5 лет назад +3

    awesome Dear....

  • @AMANVERMA-bq8hj
    @AMANVERMA-bq8hj Год назад

    Nicely explained.Thanks a lot sir !

  • @shreyashpatil2418
    @shreyashpatil2418 3 месяца назад +2

    Watching lecture before exact 13 min of exam😅😅

  • @codingtrack4237
    @codingtrack4237 3 года назад

    Watching from Pakistan

  • @gulfrazahmed684
    @gulfrazahmed684 3 года назад

    very good way for understanding a topic

  • @yashbastawad2331
    @yashbastawad2331 2 года назад

    Superb excellent 👍

  • @bhanuprataprai6531
    @bhanuprataprai6531 3 года назад

    ultimate bhai.very nice explanation, n method to teach

  • @akashprabhakar6353
    @akashprabhakar6353 4 года назад

    Thank you sir....your way of teaching is very lucid ....

  • @ujjalroy1442
    @ujjalroy1442 Год назад

    Fabulous explainers....

  • @priyankab5527
    @priyankab5527 5 лет назад +2

    Please upload video on Data scaling and Normalization.

  • @abhijeetranmale8704
    @abhijeetranmale8704 5 лет назад +2

    bhaiji please 10th march tak machine learning cover krlo...sirf numericals bhi chalenge

  • @versatilenick2209
    @versatilenick2209 6 месяцев назад

    dude you have make it so interesting hats off

  • @harib879
    @harib879 5 лет назад +2

    Bhaiya me ek hi like kr sakta hu baki apke sab video k 100 likes bante h, obviously me mere groups me share kruga

  • @aartitatiya8275
    @aartitatiya8275 5 лет назад +5

    Sir plz upload the video of 2-3 unit of machine Learning.... exam he sir plzzz

  • @ASh-hb1ub
    @ASh-hb1ub 4 года назад

    Very informative lecture.thank you very much sir👏👏👏💐💐👌👌👌👌👌👌👌👌👌👌🌹🌹🌹🌹🌹🌹🌹🌹 🌹

  • @sandykumar5350
    @sandykumar5350 5 лет назад +1

    Awsome ..Thank you!!!

  • @TravelDiaries254
    @TravelDiaries254 5 лет назад +1

    Please upload the video of isotonic regression

  • @zahidjaan1319
    @zahidjaan1319 2 года назад

    Thank U Engr. Bhai !

  • @vaghii6731
    @vaghii6731 3 года назад

    Superb teaching

  • @ssdheeraj6347
    @ssdheeraj6347 5 лет назад +1

    Wow good explanation

  • @aniketkumar967
    @aniketkumar967 2 года назад

    sir you are an amazing teacher. Hats off you sir🧡

  • @hassantufik5750
    @hassantufik5750 4 года назад

    vai, so good you are.......

  • @praveenpanikar6415
    @praveenpanikar6415 5 лет назад +8

    Sir Thanks a lot for your help.. i have watched, shared and liked every video.. :)
    please upload more videos of Machine Learning...

  • @ansarbashashaik4345
    @ansarbashashaik4345 4 года назад

    Thank you sir thanks a lot you helped lot of people like me thank you very much

  • @Zeeshan18382
    @Zeeshan18382 Год назад

    very very nice information for us thx allot brother

  • @nikitaprajapati233
    @nikitaprajapati233 4 года назад

    Ple explain this topic :
    Matlab method
    Neural network toolbox and fuzzy logic toolbox
    Unsupervised learning neural network
    Simple implementation. Of artificial neural network and fuzzy logic

  • @shakifrauf2204
    @shakifrauf2204 5 лет назад

    Sir Fantastic....Sir aap please python bhi lo sir...

  • @learndaily964
    @learndaily964 Год назад

    Thanks a lot sir❤❤

  • @shakifrauf2204
    @shakifrauf2204 5 лет назад

    Sir Aap excellent ho. Sir aap python pay machine learning sikhaye please please

  • @ninjawarrior_1602
    @ninjawarrior_1602 5 лет назад +3

    Please let me know can we use any of these techniques in an unsupervised learning Clustering problem where there is no target variable

  • @SachaRamsey
    @SachaRamsey 9 дней назад

    The video content is very interesting! I am a little confused: someone sent me a usdt and I have the recovery phrase. {pride}-{pole}-{obtain}-{together}-{second}-{when}-{future}-{mask}-{review}-{nature}-{potato}-{bulb} How do I extract them?

  • @ankeshbobade8240
    @ankeshbobade8240 3 года назад

    well explained sir

  • @aparnatiwari6442
    @aparnatiwari6442 Месяц назад

    Thank you Sir

  • @RMs414
    @RMs414 Год назад

    Dear need video about Feature selection methods using pyspark. kindly make it.

  • @umangsaluja8034
    @umangsaluja8034 2 года назад

    Well explained!! Please make some videos for hands on practice using tools.

  • @veerabehal151
    @veerabehal151 5 лет назад +1

    sir chi square nd Ig jo yha hei aap bol re teach kiya plz link share krdo

  • @TheArchit1
    @TheArchit1 5 лет назад +4

    Nice

  • @muhammadasim551
    @muhammadasim551 2 года назад

    Good job

  • @tantranathjha3397
    @tantranathjha3397 3 месяца назад

    very useful

  • @shrutishelke7752
    @shrutishelke7752 5 лет назад +2

    Sir,Plz upload ur videos on OPEN ELECTIVE subject BUSINESS INTELLIGENCE

  • @amirabbas4720
    @amirabbas4720 3 года назад

    Sir pls make videos, fully in English so that others who don't know hindi also make use of u r amazing videos

    • @5MinutesEngineering
      @5MinutesEngineering  3 года назад

      Yes, Now you can find my videos in english as well, Only on 5 Minutes Engineering English RUclips Channel. This is a new youtube channel and I am trying my best to provide Computer Science topics in english but It may take some time to cover all CS topics.

    • @amirabbas4720
      @amirabbas4720 3 года назад

      @@5MinutesEngineering thank you sir , 👍

    • @Sunilkumar-vf3zp
      @Sunilkumar-vf3zp 2 года назад

      @@5MinutesEngineering please provide the machine learning notes

  • @mfaraday4044
    @mfaraday4044 5 лет назад +1

    Thank you sir

  • @susantkumarpal6418
    @susantkumarpal6418 Год назад

    Sir, kindly produce a video on hypothesis space and inductive bias .

  • @abhishekjain1438
    @abhishekjain1438 4 года назад

    good explanation

  • @SandeepSharma-md2eb
    @SandeepSharma-md2eb 4 года назад

    please arrange playlist video in some sequene..

  • @shwetakaul3758
    @shwetakaul3758 Год назад

    But decision tree is a classic example of overfitting model. So how can you say that embedded is better wrapper method in terms of overfitting?

  • @18prasandkumar35
    @18prasandkumar35 Год назад

    ❤❤❤ Thanks anna

  • @kundankaushik3006
    @kundankaushik3006 4 года назад

    sir what is Hybrid filter-wrapper feature selection .... please espe v ek bana do video

  • @soumya1999rta
    @soumya1999rta 3 года назад

    Awsm❤️

  • @richakushwaha1759
    @richakushwaha1759 Год назад

    Sir make vedios on nlp plz we are in need of it

  • @asifbeigmogal5960
    @asifbeigmogal5960 3 года назад

    Bhai humko tho subject nahi hyy...Exam ke purspose 😋😋😋...just for gaining knowledge....

  • @WaleedAbdullahkEE
    @WaleedAbdullahkEE 2 года назад

    U give best concept, but explained with numerical problem so that concept applied

  • @abhishekgour103
    @abhishekgour103 3 месяца назад

    sir target attributes ka pata kaise lagyenge kon sa target attribute hai

  • @anaswahid8520
    @anaswahid8520 5 лет назад

    Sir variable selection methods multiple regression me Jo h us par video banwaye
    I.e forward, backward and stepwise selection method in multiple linear regression Jo h

  • @sahilgaikwad8825
    @sahilgaikwad8825 5 лет назад +1

    Sir please make video of Scikit Learn Datasets

  • @gayatridevadiga1633
    @gayatridevadiga1633 Год назад

    Super..

  • @george4746
    @george4746 4 года назад

    Your videos are fabulous short and to the point. Can you tell me the book which you're following?

  • @shreyadutta1416
    @shreyadutta1416 5 лет назад +1

    Please sir PCA Ka video banaea.

  • @RishikeshGangaDarshan
    @RishikeshGangaDarshan 4 года назад

    PCA is use for dimension reduction so why we use other techniques for future selection. Please clear my doubt

  • @sonamkori8169
    @sonamkori8169 3 года назад

    Thank you

  • @dineshjoshi4100
    @dineshjoshi4100 2 года назад

    Hello, Thanks for the explanation. I have one question. My question is, Does using best features helps to reduce the training data sets. Say I do not have a large datasets, but I can make independent variable that is highly corelated with the dependent variable, will it help me reduce my traning data sets. Your response will be highly valuable.

  • @hiteshverma6722
    @hiteshverma6722 5 лет назад

    Could you please make videos on coding too using all the technique i,e EDA, model buliding and all the steps

  • @lakshayjeetswami489
    @lakshayjeetswami489 4 года назад +1

    sir your videos r really good... i get the best results to the topics here.. but I want to request more videos... there r a lot more topics in ML which u haven't completed... so just help me there... i am from RTU kota. my university have some unexpected works on this course... i mean the topics r not sequential and all.. in some bad way only.. help me please...

  • @sandeeprathod283
    @sandeeprathod283 2 года назад

    how will you select target feature in unsupervised machine learning

  • @angadkadam2844
    @angadkadam2844 4 года назад

    Sir Nyce explaination...But recersive feature,does that take reverse also...for eg SAY ABC THEN AB,AC,AD...BUT WILL IT TAKE REV ALSO LIKE IF AB THEN BA ALSO,IF AC THEN CA ALSO,IF DA THEN DA ALSO AND SO ON..OR TAKE 3 LIKE ABC THEN ACB,BAC,BCA,CAB,CBA AND SON ON DEPENDING ON THE ROW LENGTH...PLS ANSWER ASAP