Can you find area of the Purple shaded triangle? | (Right triangles) |

Поделиться
HTML-код
  • Опубликовано: 7 фев 2025

Комментарии • 42

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب 3 месяца назад +5

    Let's assume that the area of the triangle AED is x, from which x/(x+14)=AD/AC=ED/BC=14/32, so x=98/9.

  • @michaeldoerr5810
    @michaeldoerr5810 3 месяца назад

    This is an example easier than it looks and this is probably why AA similarity is way more useful than it is given credit for!!!. I better use that for practice!!!

  • @SuryaSurya-jl5gf
    @SuryaSurya-jl5gf 2 месяца назад

    ∆DEC and ∆EBC share the same height, so
    DE/BC = 14/32 = 7/16.
    DE/BC = AD/AC = 7/16.
    AD/DC = 7/9.
    ∆ AED and ∆ DEC share the same height, so area of ∆ AED = 7/9 x area of ∆ DEC = (7/9) x 14 = 98/9.

  • @santiagoarosam430
    @santiagoarosam430 3 месяца назад +1

    Sobre el triángulo EBC construimos el rectángulo EBCF de área 2*32=64→ Área CFD=32-14=18.
    Si decimos que EB=4→ BC=16 ; ED=7 y DF=9→ Razón de semejanza entre AED y CFD, s=7/9→ s²=49/81→ Área AED=s²*18 =882/81 =98/9 =10,88 cm².
    Gracias y un saludo cordial.

  • @1ClassicalMusicFan
    @1ClassicalMusicFan 3 месяца назад

    Pause at 1:08.
    (I) “The ratio of the areas of two similar triangles is equal to the square of the ratio of their corresponding sides.”
    x/(x+14+32)=x/(x+46)=(AD/AC)^2.
    (2) "If two triangles share a height, then the ratio of their areas is equal to the ratio of their bases." Applying this to △EAD and △ECD, we get
    x/14=AD/CD, or x/(x+14)= AD/AC.
    Combine these 2 results and solve for x to get 18x=196 and x=98/9.

  • @marcelowanderleycorreia8876
    @marcelowanderleycorreia8876 3 месяца назад

    I spent several hours to solve this tricky puzzle... If I was doing a test, I'd never solve this... Congrats professor! 👍

  • @sergioaiex3966
    @sergioaiex3966 3 месяца назад +1

    Solution:
    Initially, let's dimension the figure:
    AE = a
    ED = n
    EB = b
    BC = m
    Blue Triangle
    A = ½ base × height
    32 = ½ m b
    m = 64/b
    Yellow Triangle
    A = ½ base × height
    14 = ½ n b
    n = 28/b
    The Pink Triangle AED is similar to the Larger Triangle ABC
    The ratio between the areas of similar triangles is equal to the square of the
    similarity ratio. In this case, the bases "n" and "m" are similar
    Area AED = S
    Area ABC = S + 46 (14 + 32)
    Area AED/Area ABC = n²/m²
    S/(S + 46) = (28/b)²/(64/b)²
    S/(S + 46) = (28/b/64/b)²
    S/(S + 46) = (28/64)²
    S/(S + 46) = (7/16)²
    S/(S + 46) = 49/256
    256S = 49S + 2254
    207S = 2254
    S = 2254/207 (÷23)
    S = 98/9 cm² ✅
    S ~= 10,889 cm² ✅

  • @ParamitaBhattacharya
    @ParamitaBhattacharya 3 месяца назад +2

    Please elaborate about the hight of triangle CDE

  • @quigonkenny
    @quigonkenny 3 месяца назад

    Extend ED up to F, where CF is parallel to EB. As CF and EB are parallel and FE and BC are parallel, and ∠FEB = ∠EBC = 90°, then CFEB is a rectangle. As EC is the diagonal of CFEB, then the area of CFEB is twice the area of ∆EBC, or 2(32) = 64 cm².
    As the area of ∆CDE is 14 and the area of ∆EBC is 32, the area of triangle ∆CFD = 64-(32+14) = 64-46 = 18.
    As ∠CFD = ∠AED = 90° and ∠FDC and ∠EDA are veryical angles and thus congruent, then ∆CFD and ∆AED are similar triangles. As ∆CFD is 18 cm² and ∆CDE is 14 cm², then the ratio of their bases FD to DE is 18/14 = 9/7, as the triangles have the same height.
    As ∆CFD and ∆AED are similar, the ratio of all their sides are the same, so the ratio of their areas equals the square of the ratio of their sides.
    A = (7/9)²18
    A = 49(18)/81 = 98/9 = 10.8​̅ cm²

  • @sadnanjuhib
    @sadnanjuhib 3 месяца назад

    ❤❤

  • @sergeyvinns931
    @sergeyvinns931 3 месяца назад

    RUSSIA! Рассмотрим трапецию BCDE, её площадь равна (ВС+DЕ)*BE/2=46. BC=BE=8, DE=a; (8+а)*8/2=46; а=7/2;
    АЕ=х; исходя из подобия треугольников AED и ABC, составляем пропорцию 7/2х=8/(8+х), откуда находим х=56/9; теперь находим площадь розового треугольника, А=56*7/9*2*2=98/9.

  • @NASIR58able
    @NASIR58able 3 месяца назад

    Very nice

  • @alexundre8745
    @alexundre8745 3 месяца назад +2

    Bom dia Mestre
    Essa eu acertei, fiquei feliz porque estou aprendendo Geometria com o Sr
    Grato

    • @PreMath
      @PreMath  3 месяца назад

      Excelente!
      Fico feliz em ouvir isso!
      Obrigado pelo feedback ❤️

    • @alexundre8745
      @alexundre8745 3 месяца назад

      @@PreMath Muito obrigado pela instrução
      O Sr é um Homem de Bom ❤️

  • @cyruschang1904
    @cyruschang1904 3 месяца назад

    xy = 28
    xz = 64
    y/z = 28/64 = 7/16
    pink triangle is (7/16)^2 = 49/256 of the large triangle
    (14 + 32) cm^2 is 1 - (7/16)^2 = 207/256 of the large triangle
    pink triangle = 46 cm^2 (49/207) = (2254/207) cm^2 = (10 + 184/207) cm^2

  • @himo3485
    @himo3485 3 месяца назад

    DE*EB/2=14 CB*EB/2=32 DE=28/EB CB=64/EB DE : CB = 7 : 16
    ⊿DEA∞⊿CBA ⊿DEA=7*7*s=49s ⊿CBA=16*16*s=256s
    DECB= 256s-49s=207s=46(cm²) s=2/9
    ⊿DEA=Purple area=49s=49*2/9=98/9(cm²)

  • @PrithwirajSen-nj6qq
    @PrithwirajSen-nj6qq 3 месяца назад

    BC =16x
    DE = 7x
    AE =7 p
    AB= 16p
    BE =( 16-7)p=9p
    Area of 🔺 CBE =
    1/2*BC*BE=1/2 *16x *9p
    = 32 sq units
    xp =32/72=4/9
    Area of 🔺 ADE = 1/2*7x *7p =49xp/2 =49*4/9*2=98/9 sq units

    • @herolivesnu
      @herolivesnu 3 месяца назад

      Nice work, please how did you arrive at values(show formulas), BC? DE? AB? What does x and p mean in your solution?

  • @marcgriselhubert3915
    @marcgriselhubert3915 3 месяца назад

    2.area of EDC = 28 = ED.EB and 2.area of EBC = BC.EB, so by division: ED/BC = 28/64 = 7/16
    Triangles ADE and ACB are similar (same angles), so AE/AB = ED/BC = 7/16. Let's note AE = 7.k and AB = 16.k. Then by difference EB = 9.k
    2.area of AED = AE.ED = 7.k.ED and 2.area of EDC = ED.EB = ED.9.k. So we have area of AED/ area of EDC = 7/9, and as area of EDC = 14, then we have that area of AED = (7/9).(14) = 98/9.

  • @RayCChoi-nj3gs
    @RayCChoi-nj3gs 3 месяца назад +3

    6:00, why h square over k square? thanks.

    • @ناصريناصر-س4ب
      @ناصريناصر-س4ب 3 месяца назад +1

      Because the ratio of the areas of two similar triangles equals the square of the similarity ratio.

    • @herolivesnu
      @herolivesnu 3 месяца назад

      Please can you prove this theorem you just stated here? I was about asking the same question that he asked. Let's not assert without proofs, please.

    • @herolivesnu
      @herolivesnu 3 месяца назад

      Thanks for stating the theorem. You are absolutely right, I have seen the proof of the theorem. Thank you so much for letting me know that

  • @phungpham1725
    @phungpham1725 3 месяца назад

    It’s tricky but fun😅
    1/ Label the area of the purple area as A
    We have
    1/2 DExEB= 14 (1)
    1/2 BCxEB=32. (2)
    -> (1)/(2)-> DE/BC=14/32=7/16
    The purple triangle and ABC triangle are similar
    so, DE/BC=AE/AB=7/16
    -> A/(A+46) = sq(7/16)=49/256
    -> A=46x49/207= 10.89 sq cm😅😅😅

  • @andrewlu8959
    @andrewlu8959 3 месяца назад

    x/14=(x+14)/32 => x =98/9

  • @devondevon4366
    @devondevon4366 3 месяца назад

    Answer 10.88888 round to 10.89
    Different approach
    Let's label the length of the blue A and the height C
    Let's label the base of the yellow B and the height C (the same height as the blue)
    then BC = 28
    and AC = 64 Equation 1
    B/A = 7/16 (divide BC by AC)
    Hence, B = 7/16 A (multiply both sides by A). This is the base of the purple
    Let's label the base of the purple P
    Since the purple is similar to the large triangle, then
    (P+C)/A = P/7/16 A
    (P+ C) = P/7/16 (multiply both sides by A)
    7/16 P + 7/16 C = P (cross multiply)
    7/16 P + 7/16 C= 16/16 P ( 16/16P = P)
    7/16 C = 9/16 P
    7/16 * 16/9 * C = P
    7/9 C = P This is the height of the purple
    Hence, the base and height of the purple in terms of A and C
    are 7/9 C and 7 /16 A
    Hence, the area of the purple in terms of A and C is
    7/9 C * 7/16 A * 1/2 = 49/144 * 1/2 * AC = 49/ 288 AC
    But recall AC =64 (see equation 1)
    Hence, the area of the purple is 49/288 * 64 = 3136/288
    3136/288 = 10.888888889

  • @Nerkar_07
    @Nerkar_07 3 месяца назад

    Can you teach..... hacsigun into the circle minus or circle into the hacsigun

  • @ParamitaBhattacharya
    @ParamitaBhattacharya 3 месяца назад

    First comment from Yorkshire UK👍

  • @georgebliss964
    @georgebliss964 3 месяца назад

    Triangle ABC is not defined uniquely.
    Let EB = BC = 8.
    Comparing blue & yellow triangle areas.
    8 / 32 = DE / 14. ( same heights EB).
    DE = 3.5.
    Similar triangles ABC & AED.
    8 / (AE + 8) = 3.5 / AE.
    Cross multiplying.
    8AE = 3.5AE + 28.
    4.5 AE = 28.
    AE = 28 / 4.5.
    Area of purple triangle.
    1/2 x (28 / 4.5) x 3.5.
    14 x 3.5 / 4.5.
    10.89

  • @shesh9842826910
    @shesh9842826910 2 месяца назад

    Professor,I don't understand ∆CDE height because k is not perpendicular.

  • @wasimahmad-t6c
    @wasimahmad-t6c 3 месяца назад

    10 100%raite full area 8×14÷2=56 )(3.4285714286×6÷2=10

  • @wackojacko3962
    @wackojacko3962 3 месяца назад

    Beginning @ 8:30 , For some odd reason the dimensions of stuff change for me standing on the South Pole or the Equator. Just can't trust myself. Sometimes I'm exact but not so precise. Maybe if I did all my measurements on the 45th Parallel North or South everything would be okay. 🙂

    • @santiagoarosam430
      @santiagoarosam430 3 месяца назад +1

      Aunque más frío, yo me siento más aplomado en el círculo polar ártico.

    • @phungpham1725
      @phungpham1725 3 месяца назад +1

      😊😊😊

  • @nenetstree914
    @nenetstree914 3 месяца назад

    98/9

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 3 месяца назад

    RESOLUTION PROPOSAL :
    01) DE = b(ase)
    02) BC = B(ase)
    03) BE = h(eigth)
    04) Trapezoid [BCDE] Area = (B + b) * (h/2) = 46 ; h*B + h*b = 92
    05) b * h = 28 sq cm
    06) B * h = 64 sq cm
    07) h = 28/b and h = 64/B
    08) 28/b = 64/B ; 28 * B = 64 * b ; 7B = 16b ; b = 7B/16
    09) There are many infinite Solutions for this Equation : b = 7B/16 ; within the Variable Domain D = ]1 ; 14[
    10) Prime Factors of 28 = {2 ; 2 ; 7}
    11) Prime Factors of 64 = {2 ; 2 ; 2 ; 2 ; 2 ; 2}
    12) Then I saw that : 8 * 3,5 = 28. What's the right Solution?
    13) Could it be (Possible Solution) BE = BC = 8 cm? And DE = 3,5 cm? I am not sure!!
    14) Let's try.
    15) 8/(8 + X) = 3,5/X ; 8X = 3,5 * (8 + X) ; 8X = 28 + 3,5X ; 4,5X = 28 ; X = 56/9
    16) 2 * Purple Area = 35/10 * 36/9 = 1.260 / 90 = 126 / 9 = 14
    17) PA = 14 / 2 ; PA = 7 Square Centimeters.

  • @Birol731
    @Birol731 3 месяца назад

    My way of solution ▶
    A(ΔEBC)= 32 cm²
    A(ΔECD)= 14 cm²
    [EB]= a
    [BC]= b
    [DE]= c
    [AE]= d
    A(ΔEBC)= 32 cm²
    [EB]*[BC]/2
    a*b/2= 32
    ab= 64
    A(ΔECD)= 14 cm²
    [DE]*[EB]/2
    c*a/2= 14
    ca= 28
    Let's divide ab to da :
    ab/ca= 64/28
    b/c= 16/7
    b) ΔAED ~ ΔABC
    [AE]/[AB]= [DE]/[BC]
    d/(d+a)= c/b
    c/b= 7/16

    d/(d+a)= 7/16
    16d= 7d+7a
    9d= 7a
    d= 7a/9
    c) [AB]= a+d
    d= 7a/9
    [AB]= 7a/9 + a
    [AB]= 16a/9
    ab= 64
    (16a/9)*b= s

    s= 64*(16/9)ab/ab
    s= 1024/9
    A(ΔABC)= 1024/9/2
    A(ΔABC)= 1024/18 cm²
    d) Apurple= A(ΔABC) - A(ΔEBC) - A(ΔECD)
    A(ΔEBC)= 32 cm²
    A(ΔECD)= 14 cm²

    Apurple= 1024/18 - 32 - 14
    Apurple= 98/9 cm² ✅

  • @devondevon4366
    @devondevon4366 3 месяца назад

    10.88888

  • @wasimahmad-t6c
    @wasimahmad-t6c 3 месяца назад

    Do you to mee in the area math wanli 20%

  • @Christopher-e7o
    @Christopher-e7o 3 месяца назад

    Pagrium