Ravi Vakil: Algebraic geometry and the ongoing unification of mathematics

Поделиться
HTML-код
  • Опубликовано: 27 ноя 2024

Комментарии • 63

  • @ginomorales8989
    @ginomorales8989 3 года назад +52

    Acording to Fernando Zalamea, Grothendieck did not like the approach of Deligne. He considered it like a betrayal to his own vision on the subject. It was splendid, obviously, but Grothendieck considered it artificial, like a very ingenious and complex trick, not quite encompassed in the big scheme of fine topologies, topos, ramifications and all that. Like being Connes, spending decades developing noncommutative geometry, hearing that some of his students just solved the RH in two lines using undergraduate complex analysis.

    • @McRingil
      @McRingil 3 года назад +2

      Thank you fot the comment, where did you read this stuff?

    • @ginomorales8989
      @ginomorales8989 3 года назад +3

      @@McRingil Hi, the book Grothendieck, by Zalamea (in spanish) says in p.259, fn.399: "The path adopted by Deligne (...) is completely distinct. Grothendieck never accepted that proof, to his viewpoint artificial, far from the natural road offered by the standard conjectures (...). That mathematical sadness is one of the diverse reasons (...) that made him go away from Deligne and the mathematical community." Zalamea is being polite describing this. You and anyone interested in the story can go to Recoltes et semailles, part two ("The burial"), by Grothendieck himself, where in section B ("Pierre and the motives") he explains in detail his "not quite positive" opinion about Deligne.

    • @irelandrone
      @irelandrone 2 года назад +1

      @@ginomorales8989 is the book available in English?

    • @hambonesmithsonian8085
      @hambonesmithsonian8085 6 месяцев назад +2

      What do you mean “solved the RH?”

    • @minafathy83
      @minafathy83 3 месяца назад

      Riemann Hypothesis ​@@hambonesmithsonian8085

  • @ravivaradhan4956
    @ravivaradhan4956 2 года назад +9

    One can feel the deep devotion that Vakil has for Grothendieck @ 33:36

  • @Israel2.3.2
    @Israel2.3.2 4 года назад +65

    Really interesting comments on Grothendieck towards the end. "Not quite human."

    • @u.v.s.5583
      @u.v.s.5583 4 года назад +24

      Most mathematicians are almost human almost everywhere, but Grothendieck was weird even for a mathematician, but in sporadic cases he was hyperweird.

    • @ginomorales8989
      @ginomorales8989 3 года назад +13

      I heard once a quote describing him as "a student of a primary school from an advanced galactic civilization visiting us". Somehow related to this, to the end of his life Grothendieck believed that an entity from outer space visited him and revealed him a message of truth and peace, described in "La clef des songes", a very long manuscript where he applied his mathematical ideas to his dreams in order to understand consciousness.

    • @Achrononmaster
      @Achrononmaster 4 месяца назад

      @@u.v.s.5583 Grothendieck and Ramanujan were more human than the rest of us. The correct statement is all the rest of us are subhuman, or at least making honest attempts to be human but constantly falling below our true potential.

    • @eternaldoorman5228
      @eternaldoorman5228 2 месяца назад

      It's interesting that Vakil talked about the difference between our knowledge of the speed of light and of pi. Of Grothendieck it has been said (in a Guardian article) "He believed, for example, that the speed of light being close to, but not precisely, 300,000km a second, was evidence of Satan’s interference." Maybe it's all these people who just use mathematics to make money that are messing with God's plan to get light to go the right speed.

  • @MrNoremac99
    @MrNoremac99 4 года назад +99

    For those wondering how he knew all the other digits of the speed of light, it’s defined as exactly 299 792 458 m/s.
    In fact, the metre is defined in terms of the speed of light, rather than the other way around, which is what gives us this nice round number.

    • @adrianwright8685
      @adrianwright8685 3 года назад +14

      A more sensible and convenient definition might have been 300,000,000 m/s but I suppose this would have made the metre 0.07% smaller than it used to be!

    • @ginomorales8989
      @ginomorales8989 3 года назад +16

      @@adrianwright8685 c=3•10^8=pi•g^8, according to an engineer friend of mine

    • @adrianwright8685
      @adrianwright8685 3 года назад +1

      @@ginomorales8989 c is approx 3.10^8 but exactly 299792458 m/s as this comment made clear. ( pi.g^8 ? )

    • @Idk-hp3oo
      @Idk-hp3oo 3 года назад +3

      @@adrianwright8685 its a bad Engineering joke : pi=3 and g=10(instead of 9.81 m/s^2 (which is the acceleration due to gravity on earth without any air

    • @Chalisque
      @Chalisque 2 года назад

      As for 3*10^8, I would imagine that that would mess up with research which relied on the pre-existing value of c. In 1982, I imagine the value of c was known to more than 3.s.f, so research prior to the 1983 redefinition of the metre would make calculations assuming the error in the value of c was smaller than 3.s.f. If you made c=3e8, then many of those calculations would need to be re-done.

  • @swavekbu4959
    @swavekbu4959 10 месяцев назад +3

    The "light" that turns on when "everything makes sense" is not restricted to mathematics, it can occur in any discipline or hobby. Musicians, for instance, experience that too after so much time and experience with their instrument.

    • @redafousshi514
      @redafousshi514 3 месяца назад

      This comes from récoltes et semailles

  • @Achrononmaster
    @Achrononmaster 4 месяца назад +2

    He wrote a nice book too. But I hate it when nerds say, "...has nothing to do with the empirical world..." --- he just wrote it down on a physical blackboard in refined limestone deposits from marine organisms like foraminifera, coccoliths, and rhabdolith, and who knows what else, onto a board made out of wood, other polymers, and whatnot, ... so I say all this algebraic geometry abstract nonsense is very physical and empirical. I can count on my hands the number of people who understand Nick Katz's lecture. Highly empirical. And hey... I'm not even a strict materialist. Go platonism, or neoplatonism or any non-fash variety.

  • @Achrononmaster
    @Achrononmaster 4 месяца назад +4

    @30:30 "... seem to have nothing to do with the complex numbers.." again with the false sense of intuition. Modular arithmetic is deeply related to cyclicity, which is related to rotations, which is related to holes that block shrinking loops to a point, and complex numbers are really best thought of as coding rotations in a submanifold of dim-2. In other words, to even an amateur's eyes, these things are all deeply related. Teachers at high school take note. Never introduce complex numbers as distinct from rotation generators for real algebras. Because they _are_ the rotation generators --- and in real geometry terms, not "imaginary". If you can rotate +1 to −1 that's not imaginary.

  • @Achrononmaster
    @Achrononmaster 4 месяца назад

    Alright. For us mere mortals dragging our knuckles around wondering why Grothendieck went all hermit, this lecture was truly beautiful for a public talk, on time, said all he had planned, finished with thanks to the laureate, and what's more it was a tad inspirational for younger mathematicians. Almost like Vakil thought about how long his slideshow would take to get through and also how to maximize the density of public interest. Even though he repeats almost every sentence fragment twice, modulo some small prime.

  • @olenaerhardt7725
    @olenaerhardt7725 Год назад +5

    Thank you for this spectacular lecture. I've never thought about unification in Mathematics, I thought it is only in Physics, when we are trying to unify 4 forces. The sound is very low though, something should be done about it in the future. Thank you again.

  • @NothingMaster
    @NothingMaster 3 года назад +10

    When the universe (of anything, numbers included) comes in chunks--whenever you could identify distinct objects (real or conceptual/concrete or abstract)--then space, time, points, digits, sets, curves, vectors, tensors, geometries, fields, shapes, smoothness, patterns, operators, functions, constants, graphs, relations, operations, actions, evolutions, conservations, invariants, laws, symmetries, transformations, and even the continuum, the imaginary, the transcendental, the boundless, and the transfinite are all bound to happen. Without the ‘chunks’ only nothing is possible. At the heart of it all is the question: What makes it all chunky; why the quantum universe (not just of matter and dimensions, but also of thought, numbers, and the graininess of imagination)?

  • @pairadeau
    @pairadeau 4 года назад +13

    Marvelous lecture. Bless.

  • @StamNicolis
    @StamNicolis 7 месяцев назад

    A fundamental difference between the speed of light and pi is that the speed of light is a dimensionful quantity, so its numerical value depends on the units used and the only values that don't depend on the units used is c=1, c=infinity and c=0. c=1 is relevant for special relativity, c=infinity describes the non-relativistic approximation and c=0 is the so-called Carrollian limit. One can choose units in each case so that the speed of light takes the appropriate value for each of the three cases. Whereas pi is a dimensionless quantity, its nvumerical value does not depend on any convention (units are conventions, dimensions are not). That's why the digits of pi have a significance that the digits of the speed of light don't have.

  • @pectenmaximus231
    @pectenmaximus231 3 года назад +8

    Argh. Each time I want the talk to settle on one of the incredible points raised, we’re already veering off somewhere else. I guess it’s an awful lot of interesting stuff to put in a single talk but dang. Guess this is my AG apperitif

  • @meofamily4
    @meofamily4 Год назад +1

    It stopped being comprehensible at 22 minutes and 15 seconds. Of course that's more testimony to my own limitations than to the clarity of the lecture.
    I have no way to see how the real solutions ought to lie on a closed curve in two-dimensional space. Let alone where the complex plane (well, perhaps four-dimensional space, I'm not sure) came from.

    • @qart-hadasht
      @qart-hadasht 9 месяцев назад

      We want integer solutions of x^n + y^n = z^n, this is roughly equivalent to rational solutions of (x/z)^n + (y/z)^n = 1. So the solutions we are looking for should be rational points (rational coordinates) on the graph of X^n + Y^n = 1 with X=x/z, Y=y/z. The graph of X^n + Y^n = 1 is just a closed curve in 2D space (try graphing it). Where does the complex plane come from? Well, if we look for complex solutions of X^n + Y^n = 1, that is just the graph of X^n + Y^n = 1 with X and Y both complex numbers, we get a curve in C^2 (curve because one dimension in C in a C^2 space, if you insist on sounting dimension using R instead, you get a surface in C^2=R^4 space but this not how dimension is defined in alg. geom).
      Why did we do this? Believe it or not, finding complex solutions is easier than finding rational solutions. In very vague terms, if we look at all complex solutions, then problems become essentially geometric and are 'easier' but when you look for rational solutions things are harder because there's algebra and arithmetic shenanigans in addition to geometry that you have to deal with.
      Here's an easy example that should provide some intuition: What are solutions to x^2 + y^2 = 1? Over reals it's easy to compute: it's all points on a circle so (cos(t), sin(t)) for t from 0 to pi. What are solutions over rationals? (The answer is not so easy, but still doable, look up Pythagorean triples)

  • @KaliFissure
    @KaliFissure 3 года назад +3

    And what is the distribution of Pythagorean triples on the circle? Is the density even or shaped?

  • @Adivasilover10
    @Adivasilover10 4 года назад +3

    great teacher

  • @VeteranVandal
    @VeteranVandal 9 месяцев назад

    I think saying pi is something empirical, at least up to a very precise (but not arbitrarily precise) sense, is completely valid - not that it matters for your argument, to be honest, but I'll tell you that pi isn't so much more abstract than the speed of light. It's obviously true that we don't need to determine pi physically or empirically, but we sure CAN do it, and it appears so frequently that this means that pi is fundamental to our world, physically, beyond what a lot other numbers can. Mathematics abstracts the measuring part out of it, but that doesn't make the number itself less important. In fact, if the metric we experience was completely different, then it wouldn't be empirical and likely not as important. A circle and a sphere are inherently empirical, while a hypersphere isn't. It doesn't matter pi relates to all of them, what matters is that pi matters way before the abstractions come in. Pi is a completely material, empirical object, so much so we stumbled on it EXACTLY to solve practical problems, instead of abstract ones. Now, if you want to say other numbers are purely abstract, that I can get behind. Or that we don't need to use empirical methods to determine it.
    I also disagree with Wigner. I think it's perfectly reasonable that a language can explain something. What is sometimes surprising are the coincidences that are unexpected, and that are, at times, very hard to connect or to discover. That's usually unreasonable.

  • @sam_the_davidson
    @sam_the_davidson 4 месяца назад

    A remarkably accessible lecture!

  • @KaliFissure
    @KaliFissure 3 года назад +2

    If a black hole event horizon is the exterior membrane of a true perforation in spacetime doesn’t that mean that our manifold must itself have at least one perforation? Which means our universe is not a hyper sphere but a hyper toroid but because gravity it must have lopsided manifold density. 3d cardioid? The navel (event horizon) mapping onto an entire area on the least curved portion of surface. Is this loop quantum gravity?
    The neutrons which invert at moment of collapse of neutron star into black hole are accelerated by gravity to c. They emerge in least dense regions, decay into hydrogen and do the journey again. Diffuse hydrogen>nebulae>galaxies/stars>neutron star>black hole.
    The inversion of the circle.

    • @Anonymous95202
      @Anonymous95202 Год назад +2

      seek psyciatric help

    • @KaliFissure
      @KaliFissure Год назад

      Instead.....
      I did some geometry study since that post and found the radially symmetric Klein bottle which solves all the topological issues of the manifold and gives us neutron decay cosmology.
      A homeostatic universe maintained by the reciprocal processes of electron capture at event horizons and free neutron decay in deep voids.
      DM is decayed Neutrons
      DE is the expansion caused by that decay from 0.6fm³ neutron to 1m³ of hydrogen gas.

  • @eternaldoorman5228
    @eternaldoorman5228 2 месяца назад

    3:05 That thing you discover that's potentially very deep and that changes how you can see the world is ... the light switch?

  • @PC-wi1tk
    @PC-wi1tk Месяц назад

    Very good, inspiring lecture.

  • @KaliFissure
    @KaliFissure 3 года назад +5

    Pi has to be irrational so that a wave traveling in space doesn’t self resonate and destroy everything. A wave traveling through the diameter will be out of phase (to an inharmonic way) to that wave traveling on the surface.

  • @milanstevic8424
    @milanstevic8424 3 года назад

    ....aye aye aye aayy....

    • @xyzct
      @xyzct 2 года назад +4

      It's such a bizarre mannerism; talk really fast, but stutter in search for basic, everyday words, thereby taking three times as long as necessary to say the simplest thing.

  • @Micky_Tick
    @Micky_Tick 3 года назад +3

    Does someone know from where the quote from André Weil at 36:40 is from ?

    • @colinmclarty8082
      @colinmclarty8082 3 года назад +7

      André Weil, «De la métaphysique aux mathématiques», Œuvres, t. II, p. 408.

  • @Robert-er5wq
    @Robert-er5wq Год назад +1

    mph by a Canadian at a European university...

  • @Rahul016-d6k
    @Rahul016-d6k 4 года назад +2

    👍👍

  • @KaliFissure
    @KaliFissure 3 года назад +1

    Because primes have no clean divisors this makes each of them a new unity. They have no harmonics yet. They are sine/root.

  • @SphereofTime
    @SphereofTime Год назад +1

    9:11

  • @vtrandal
    @vtrandal 2 года назад +3

    At 2:50 he is quoting Andrew Wiles.

  • @diktakt1187
    @diktakt1187 3 года назад

    20 07 Tricks

  • @menacekat
    @menacekat Год назад

    Lit

  • @vremiavremiavremiavremia1706
    @vremiavremiavremiavremia1706 Год назад +2

    🇷🇺🇷🇺🇷🇺🇷🇺🇷🇺🚩🚩🚩🚩🚩🚩🚩🚩❤️❤️❤️❤️❤️❤️❤️❤️❤️🤗🤗🤗🤗

  • @kenichimori8533
    @kenichimori8533 3 года назад

    Abelian define lecture.

  • @kenichimori8533
    @kenichimori8533 4 года назад

    Solution = Y = 0

  • @kenichimori8533
    @kenichimori8533 4 года назад

    Twin Algebraic Geometry 0 = 2y = = x2

  • @StevenNess
    @StevenNess Год назад

    quite a few issues with this lecture and flaws of understanding of science. should do more listening and less talking.