Rotary Inverted Pendulum System Using Reinforcement Learning

Поделиться
HTML-код
  • Опубликовано: 29 ноя 2024

Комментарии • 9

  • @hw1875
    @hw1875 10 месяцев назад

    Very cool! May I know what is the reward function you used? Thanks!

  • @ControlEngineeringCh
    @ControlEngineeringCh Год назад

    good work

  • @japlb
    @japlb 5 лет назад +10

    Amazing project, but how do you measure the angle of the pendulum?

    • @angelo_pavan
      @angelo_pavan 3 года назад +1

      I think he used the QUBE servo to measure the angle and some physics (lagrangian mechanics I guess). But idk, I didn't make the project.

  • @tszulpinedo757
    @tszulpinedo757 3 года назад

    Y cuando nos van a enseñar a hacerlo?

  • @nocknock4832
    @nocknock4832 3 года назад

    very cool!

  • @nunobartolo2908
    @nunobartolo2908 3 года назад +2

    But why not just use an lqr?

    • @michach_164
      @michach_164 5 дней назад

      You need a model for LQR. Usually reinforcement Learning has the advantage of Model Free design. Thats the only advantage it would have. Also LQR is based upon a model of the real system, which will never perfectly describe the environment. Especially for nonlinear systems, this could provide an advantage over conventional design (Training on real system directly).