We are given that a wire, when bent into the shape of a square, encloses an area of 484 cm². We need to find the area enclosed when the same wire is bent into a circle. Step 1: Find the Side of the Square The area of a square is given by: \text{Area} = s^2 s^2 = 484 s = \sqrt{484} = 22 \text{ cm} Step 2: Find the Perimeter of the Square The perimeter of a square is: \text{Perimeter} = 4s = 4 \times 22 = 88 \text{ cm} Since the wire remains the same, its length when bent into a circle will also be 88 cm, which becomes the circumference of the circle. Step 3: Find the Radius of the Circle The circumference of a circle is given by: \text{Circumference} = 2\pi r 88 = 2\pi r r = \frac{88}{2\pi} = \frac{44}{\pi} \approx \frac{44}{3.1416} \approx 14 \text{ cm} Step 4: Find the Area of the Circle The area of a circle is: \text{Area} = \pi r^2 = \pi \left(\frac{44}{\pi} ight)^2 = \pi \times \frac{1936}{\pi^2} = \frac{1936}{\pi} Approximating: = \frac{1936}{3.1416} \approx 616 \text{ cm}^2 Final Answer: The area enclosed by the wire when bent into a circle is approximately 616 cm².
ಬಡವರ ಪಾಲಿನ ದೇವರು ನೀವು ಗುರುಗಳೇ ನಿಮ್ಮ್ ತುಂಬಾ ಹೀಲ್ಪ್ ಸರ್ ಥ್ಯಾಂಕ್ಸ್ ಸರ್ 🙏🙏🙏🙏🙏🙏👌👌👌
ವೃತ್ತದ ವಿಸ್ತೀರ್ಣ =22/7*14*14=616 cm ² ans
BEST @nd 😊VERY HELP FULL CLASS SIR🎉❤
Super class sir❤❤❤❤
ವೃತ್ತದ ವಿಸ್ತೀರ್ಣ =22/7*14*14=616 cms2 ans
Sir onda question 5to 10mini time tagotiri astralli 3 question bidasatari
Sir SSC GD Feb 4 ge exam ide so maths cls jasti madi sir plzzzzzz....nim cls inda maths tricks kaltirodu nanu..tq so much sir.Super class sir❤
Hi
(22/7)*14²=616cm²
616cm square...
Class musth sir❤❤❤
A2=484
A=22
D=22
r =14
22*14*14
----------------==616
7
616 answer
Sir nalenu madi class
616 sir 🎉
616 sq cm Ans sir ❤
Hi
@siddannanivalagi5146 ?
616cm square
616 cm
B) 616
B option 👍
Answer of last the question is -616 sq.cm
🙏ರಿ ಸರ್ ಇಂಗ್ಲಿಷ್ ಇನ್ಕಮ್ ಕಾಸ್ಟ್ ಬೇಕಾಗುತ ಸರ್
Ans b
616cm
Sir answer 616 😊
616 sq cm sir
22/7*14*14=616
616 sq cm ans
Home work ans= 616
ಎಕ್ಸಾಮ್ ಗೇ ಎಷ್ಟು ತಿಂಗಳು ಬಾಕಿ ಇದೇ ಸರ್
Sir nale Explain madi plz
616 cm²
616cm²
616 sq.cm
a²= 484
a= 22
4a= 88
For circle, πD= 88
D= 28
Area π r² = (22/7)* 14²
= 616 cm²
616 sq. cm
We are given that a wire, when bent into the shape of a square, encloses an area of 484 cm². We need to find the area enclosed when the same wire is bent into a circle.
Step 1: Find the Side of the Square
The area of a square is given by:
\text{Area} = s^2
s^2 = 484
s = \sqrt{484} = 22 \text{ cm}
Step 2: Find the Perimeter of the Square
The perimeter of a square is:
\text{Perimeter} = 4s = 4 \times 22 = 88 \text{ cm}
Since the wire remains the same, its length when bent into a circle will also be 88 cm, which becomes the circumference of the circle.
Step 3: Find the Radius of the Circle
The circumference of a circle is given by:
\text{Circumference} = 2\pi r
88 = 2\pi r
r = \frac{88}{2\pi} = \frac{44}{\pi} \approx \frac{44}{3.1416} \approx 14 \text{ cm}
Step 4: Find the Area of the Circle
The area of a circle is:
\text{Area} = \pi r^2
= \pi \left(\frac{44}{\pi}
ight)^2
= \pi \times \frac{1936}{\pi^2}
= \frac{1936}{\pi}
Approximating:
= \frac{1936}{3.1416} \approx 616 \text{ cm}^2
Final Answer:
The area enclosed by the wire when bent into a circle is approximately 616 cm².
Bb
616
616 sq. Cm
B 616
616 cm
616
B) 616
616
616
616
616
616
616
616