Determine the Singular Value Decomposition of a Matrix

Поделиться
HTML-код
  • Опубликовано: 8 фев 2025
  • This video explains how to determine the singular value decomposition of a matrix.
    mathispower4u.com

Комментарии • 42

  • @YanisAlbertini
    @YanisAlbertini Месяц назад +2

    10mn explication in English easier than hours with my teacher in France thank you !!!

    • @charlesdaloz2547
      @charlesdaloz2547 27 дней назад

      bahaha la même j'ai un exam demain ça m'a mis bien

  • @otpezdal
    @otpezdal Месяц назад +1

    Dude, many thanks. There are not a lot videos on SVD in RUclips with that simple go-through example.

  • @Asupertramp685
    @Asupertramp685 Год назад +15

    You just answered my question perfectly, this was very helpful. Thank you so much!

    • @Mathispower4u
      @Mathispower4u  Год назад +1

      Thank you for taking the time to coment.

  • @tathabarcellos
    @tathabarcellos 7 месяцев назад +2

    thank you very much!!!! I was almost crying because I couldn't understand this and you made it seem so simple.

  • @randomgamevideos241
    @randomgamevideos241 10 месяцев назад +4

    Straight to the point, before this video i watched 4 other videos, jesus christ, thank you very much

    • @Mathispower4u
      @Mathispower4u  10 месяцев назад

      Thank you for your comment. I hope it helps the video rise in the search algorithm. 😂

  • @prinzrolle5478
    @prinzrolle5478 10 месяцев назад +26

    Just explained in 10 minutes, what my prof failed to explain in 2 hours

  • @littl3finger
    @littl3finger Месяц назад +1

    Determining the eigenvalues is significantly faster when you do AA^T instead of A^TA - anytime you have a wide matrix you can compute it faster (i.e., if you have a 2x5 matrix you have to do the eigenvalues of a 2x2 instead of a 5x5...) & vice versa for tall matrices. Because of eigenvalue properties e-vals of A^T = evals of A in this example since it's symmetric, useful tip if you want to speed up your computation!

  • @madhavbhetanabhotla9459
    @madhavbhetanabhotla9459 Год назад +2

    so simply explained and covered all important nuances to remember. thank you

  • @atakan716
    @atakan716 Год назад +6

    Thank you so much, clear and concise!

  • @DavidLessure
    @DavidLessure 24 дня назад

    This is exactly what I was looking for. Thank you so much

  • @Boat-xs8lm
    @Boat-xs8lm Месяц назад

    Thank you so much, you did not confuse me like my so called "professor" did

  • @ChitrakshiSawant
    @ChitrakshiSawant 6 месяцев назад

    Great way to teach the concept of SVD. Thanks

  • @vidhyasaagar22
    @vidhyasaagar22 9 месяцев назад

    This is the best explanation to determine SVD so far in RUclips

  • @carterschuller1583
    @carterschuller1583 9 месяцев назад +6

    Bro clutched on my linear exam today

    • @Ahmed-yo7gb
      @Ahmed-yo7gb 8 месяцев назад +2

      W about to take mine aswell

  • @rmw6151
    @rmw6151 11 месяцев назад

    Superb. Very clear and helpful. Thanks for making the effort!

    • @Mathispower4u
      @Mathispower4u  11 месяцев назад

      Thank you. You are very welcome.

  • @intuitiveclass6401
    @intuitiveclass6401 9 месяцев назад +1

    Excellent! Thanks

  • @BireBitire
    @BireBitire 8 месяцев назад

    I thank you so much

  • @hungvuvan6211
    @hungvuvan6211 9 месяцев назад

    Thank you!

  • @jay-tbl
    @jay-tbl 9 месяцев назад

    Since V is 3x3 and U is 2x2, in this case could we find the SVD of A transpose, then transpose the resulting matrices to get the SVD of A, so we can work with a 2x2 instead of 3x3 matrix and save some time?

  • @DerexArchives
    @DerexArchives Год назад

    thanks

  • @jorsonlee
    @jorsonlee Год назад +1

    10:25 Sir, could you give us a more specific clue that we might end up getting "oposite unitvectors"?

  • @pinkkitty6553
    @pinkkitty6553 Год назад +3

    thank you so much, I have an exam today

  • @sv-xi6oq
    @sv-xi6oq Год назад

    Thx bb

  • @luiscardona6898
    @luiscardona6898 4 дня назад

    All that effort to get to the same Matrix as a result .......

  • @stewartcopland7676
    @stewartcopland7676 9 месяцев назад

    What happens if an eigenvalue is negative?

  • @otisw-pe8wd
    @otisw-pe8wd 11 месяцев назад

    Niubi,bro

  • @gurkiratuzumaki3917
    @gurkiratuzumaki3917 Год назад +2

    why is the sigma matrix sum a 2x3 matrix

    • @Mathispower4u
      @Mathispower4u  Год назад

      Sigma will always be an m by n matrix so the multiplication is possible.

  • @ΚωνσταντίνοςΤζαμπάζης
    @ΚωνσταντίνοςΤζαμπάζης 9 месяцев назад +1

    Thank you!