How SHAP value is calculated? It is not hard! (simple example)

Поделиться
HTML-код
  • Опубликовано: 22 дек 2024

Комментарии •

  • @DataScienceGarage
    @DataScienceGarage  2 года назад +4

    Thank you for watching this video. I really appreciate it.
    If you liked this explaining video, I also recommend to check it out other similar videos from my channel below:
    1. Compare ML Models in few clicks with PyCaret in Python - ruclips.net/video/s38AvnzwKPw/видео.html
    2. Kubernetes Explained | High Level Explanation - ruclips.net/video/7yytUBC8grw/видео.html
    3. Calculate TF-IDF in NLP (Simple Example) - ruclips.net/video/vZAXpvHhQow/видео.html
    4. How Gradient Descent Works. Simple Explanation - ruclips.net/video/Gbz8RljxIHo/видео.html

  • @AJMJstudios
    @AJMJstudios Год назад +3

    Good example. I would suggest though making the distinction between Shapley values and the SHAP calculation more clear, the title is a little misleading.

  • @smithanair787
    @smithanair787 Год назад +2

    Great explanation! Never understood this clearly from other sources!! Well done!

    • @smithanair787
      @smithanair787 Год назад

      If in another video, if you can show how this translates to the mathematical equation for Shapley values, it will be awesome!

    • @DataScienceGarage
      @DataScienceGarage  Год назад

      Thanks for feedback, I really appreciate that you found that useful! :)

    • @DataScienceGarage
      @DataScienceGarage  Год назад

      About - translate to the math. equation - good idea. I will read more about that. :)

  • @encryptionalgorithm
    @encryptionalgorithm 2 года назад +3

    Thanks for the explanation, I have a quick remark w.r.t. the calculation done at 00:11:03
    MC1 ==> OK
    MC2 / MC3 and MC4 the labels (definition) and the calculations do not align.

  • @senumamit
    @senumamit Год назад +1

    Clear and precise explanation! Thank you so much! Loved it!

  • @umarkhan-hu7yt
    @umarkhan-hu7yt 9 месяцев назад +1

    I never see such a clear explanation on Shaley values.

    • @DataScienceGarage
      @DataScienceGarage  9 месяцев назад

      Thanks for watching! :)

    • @umarkhan-hu7yt
      @umarkhan-hu7yt 9 месяцев назад

      @@DataScienceGarage please make more video on models of XAI.

  • @ssrestore
    @ssrestore Год назад

    Very nice video. It would be nice if the weight you have used could be related to the original shap formula involving factorials.

  • @MS-ew2ru
    @MS-ew2ru 2 года назад +1

    Excellent video! That was very helpful, thank you!

  • @jamalnuman
    @jamalnuman 10 месяцев назад

    the is the best of the best. Many thanks for the efforts

  • @Poom006
    @Poom006 9 месяцев назад

    Great explanation ❤

  • @himanshubeniwal
    @himanshubeniwal Год назад

    Thanks for the informative video!

  • @edmar_santos
    @edmar_santos 2 года назад

    Thanks a lot! This explanation was very helpful!

    • @DataScienceGarage
      @DataScienceGarage  2 года назад

      Really glad it was useful, appreciate your feedback! :)

  • @mohamedezzat5048
    @mohamedezzat5048 2 года назад

    Excellent explanation

  • @Nusa-t2b
    @Nusa-t2b 8 месяцев назад

    Thank you so much

  • @utsabshrestha673
    @utsabshrestha673 2 года назад

    Well explained!

  • @thomaskuttyreji2845
    @thomaskuttyreji2845 2 года назад

    Thanks a lot

  • @tagheuer001
    @tagheuer001 Год назад +1

    One suggestion, since you pronounce v as w, it's a good idea to just pronounce v's as f's. "falues" is much better than "walues" f an v are so close anyway and I heard you say may f-words clearly.