Union of subspaces

Поделиться
HTML-код
  • Опубликовано: 10 дек 2024

Комментарии • 23

  • @mohammedal-haddad2652
    @mohammedal-haddad2652 5 лет назад +4

    Linear Algebra and Set Theory, that''s a very interesting combination. Thank you very much.

  • @peiwang3223
    @peiwang3223 5 лет назад

    Thank you soooo much, really enjoy your fantastic video, they really make my life easier.

  • @AlvaroMiranda26
    @AlvaroMiranda26 5 лет назад

    Love your videos. Saludos desde Chile

  • @DivisionbyZer0
    @DivisionbyZer0 4 года назад

    excellent stuff, keep up the good work

  • @dgrandlapinblanc
    @dgrandlapinblanc 5 лет назад

    Super clear. Thanks.

  • @leonidasliao5288
    @leonidasliao5288 4 года назад

    Really Cool THM, love it

  • @Martin981202
    @Martin981202 5 лет назад +3

    Could you please make a video of direct sums? Exams are coming and linear algebra is a tough one :) love your videos!

    • @drpeyam
      @drpeyam  5 лет назад +1

      Coming on Monday! But it’s already on the playlist

    • @drpeyam
      @drpeyam  5 лет назад +2

      Direct Sums ruclips.net/video/GjbMddz0Qxs/видео.html

    • @Martin981202
      @Martin981202 5 лет назад +2

      Dr Peyam thank you!!

  • @ACh389
    @ACh389 3 месяца назад

    Moral of the story : No finite dimensional vector space can be written as a union of finitely many of its proper subspaces.
    This can be generalized to Banach spaces using Baire's category theorem. No Banach space can be written as a countable union of its proper subspaces.

    • @drpeyam
      @drpeyam  3 месяца назад

      Interesting!!

  • @drscott1
    @drscott1 5 лет назад

    Thanks!

  • @anamikasinha3030
    @anamikasinha3030 3 года назад

    Can you tell me the way to find the union of two subsapces of a polynomial space of degree less than or equal to n.I request u to make a seperate video on polynomial space and their properties @dr_peyam

  • @danielaorozco9995
    @danielaorozco9995 5 лет назад +1

    I have the biggest crush on you 😍 thanks for the vids they’re gold!

  • @newtonnewtonnewton1587
    @newtonnewtonnewton1587 5 лет назад

    Thanks D peyam السلام عليكم

    • @coefficient1359
      @coefficient1359 5 лет назад

      @@8vabc338 I think it's some sort of a greeting. 🤷‍♀️😂🍳

    • @0120-c2k
      @0120-c2k 5 лет назад +1

      @@8vabc338
      I know a little Arabic, it says "Hello to you (Salam Alikum)"

    • @newtonnewtonnewton1587
      @newtonnewtonnewton1587 5 лет назад

      @@8vabc338 D peyam is speaking several languages arabic.english.presian.french.and german i think

  • @kirtiparashar1726
    @kirtiparashar1726 3 года назад

    Sir, considering the example that we have two sets w1 and w2, where w1 is {(0,1),(0,2),(0,3)} and w2 is {(1,0),(2,0),(3,0)} then if i want to find out the Union of these sets, will it be {(0,1),(0,2),(0,3),(1,0),(2,0),(3,0)} or the literal sum of the elements of w1 and w2 like (1,0)+(0,1) etc etc ? Please clear it sir.
    If it is not the literal sum, then in the example given in the starting of the video, why we are like adding the two points and saying that it doesn't exist in the union, why even on the first hand we supposed it to exist in the union ?

  • @Shaan_Suri
    @Shaan_Suri 9 месяцев назад

    3:01 minecraft eating sounds

  • @Handelsbilanzdefizit
    @Handelsbilanzdefizit 5 лет назад

    Haha..., "Subspace" reminds me on StarTrek :D
    But seriously. A polynomial P(x)=ax³+bx²+cx+d is the dot-product of two vectors: (x³,x²,x,1)o(a,b,c,d)
    So, the polynomial has a solution P(x)=0, when the Vectors are orthogonal. Because dot-product is zero.
    Then (x³,x²,x,1) is element of the orthogonal subspace of (a,b,c,d). Or am I wrong?

    • @drpeyam
      @drpeyam  5 лет назад +1

      As the meme says: Well yes, but actually no! I agree, for fixed x, your x3 vector would be in orthogonal subspace, but in terms of polynomials, your dot product isn’t a dot product! A dot product has to spit out a number, not a polynomial