A Rational Differential Equation

Поделиться
HTML-код
  • Опубликовано: 27 июн 2024
  • 🤩 Hello everyone, I'm very excited to bring you a new channel (SyberMath Shorts).
    Enjoy...and thank you for your support!!! 🧡🥰🎉🥳🧡
    / @sybermath
    / @aplusbi
    ⭐ Join this channel to get access to perks:→ bit.ly/3cBgfR1
    My merch → teespring.com/stores/sybermat...
    Follow me → / sybermath
    Subscribe → ruclips.net/user/SyberMath?sub...
    ⭐ Suggest → forms.gle/A5bGhTyZqYw937W58
    If you need to post a picture of your solution or idea:
    intent/tweet?text...
    #calculus #differentialequations
    via @RUclips @Apple @Desmos @NotabilityApp @googledocs @canva
    PLAYLISTS 🎵 :
    ▶ Trigonometry: • Trigonometry
    ▶ Algebra: • Algebra
    ▶ Complex Numbers: • Complex Numbers
    ▶ Calculus: • Calculus
    ▶ Geometry: • Geometry
    ▶ Sequences And Series: • Sequences And Series

Комментарии • 8

  • @mcwulf25
    @mcwulf25 12 дней назад +2

    Such a complicated equation for such a simple derivative.

  • @Blaqjaqshellaq
    @Blaqjaqshellaq 13 дней назад +2

    You can develop the solution a bit: arctan[(y-1)/(x+4)]=(1/2)*ln [(x+4)^2+(y-1)^2] + C, therefore
    e^arctan[(y-1)/(x+4)]=k*[(x+4)^2+(y-1)^2]^1/2.

  • @dmolson512
    @dmolson512 9 дней назад

    I got a much simpler result using exact equations. But the method seems like it should work. What's the difference?

  • @phill3986
    @phill3986 13 дней назад

    👍👍👍👍😊😊😊😊

  • @yoav613
    @yoav613 13 дней назад

    Very nice! And here is ahomework for you syber: y=ix+4i+1 solves this DE,but how can we get this solution from the nice general solution you found?😊💯

    • @rorydaulton6858
      @rorydaulton6858 12 дней назад +3

      You don't: your solution is a special case that SyberMath ignored in his solution.
      When the u and z variables were separated, both sides of the equation were divided by 1+u². SyberMath ignored the possibility that this is zero. (He tends to ignore special solutions, presumably to simplify and shorten the video.) So another, special solution to the differential equation is 1+u² = 0. This is equivalent to u = ±i. Since w = uz, w = y-1, and z = x+4, we get the special solutions
      y - 1 = ±i (x + 4)
      Your solution is the plus option of that equation. Yet another solution is the minus option, y = -ix-4i+1.

    • @ShortsOfSyber
      @ShortsOfSyber  10 дней назад

      Ez. Set y = ax + b and y’ = a. Plug it in and get the ratios. Then solve for a and b. 😁

    • @ShortsOfSyber
      @ShortsOfSyber  10 дней назад

      Good point! See my reply to @yoav613