Cosets and Lagrange's Theorem Part 3

Поделиться
HTML-код
  • Опубликовано: 17 дек 2024

Комментарии • 18

  • @ibtissamarbib-krasta6955
    @ibtissamarbib-krasta6955 3 года назад +5

    this is outstanding ... straight to the point, very visual, and great pedagogy ...

  • @nathanaelspiteri4788
    @nathanaelspiteri4788 8 лет назад +21

    honestly after 2yrs of studying Group theory, I'm finally understanding 10x to this playlist

  • @naru909
    @naru909 6 лет назад +5

    Thank you so much. I was stressed to the max because of this subject but now I am starting to understand!! Very well made videos. Thanks for sharing.

  • @andrewcenteno3462
    @andrewcenteno3462 5 лет назад +4

    Phenomenal explanation

  • @josephochemen9599
    @josephochemen9599 4 года назад +2

    Wow, this videos are great. They are really opening my understanding on group theory.

  • @michaelwoodhams7866
    @michaelwoodhams7866 2 года назад +2

    Instead of introducing normal subgroups as this weird thing, and then proving this aH=Ha theorem, I think I'd have approached it as "Wouldn't it be neat if aH=Ha? What would have to be true to make this work?" I.e. use this theorem as the motivation to define "normal subgroup".

  • @johncoates1923
    @johncoates1923 4 года назад +3

    Just discovered this!
    Thank you, you have a rare talent for making hard things easier. I look forward to view other Group Theory videos you've made.
    Your range of topics is most impressive! Are you a medical doctor or pharmacy researcher?
    Excellent work!

  • @ricegoing
    @ricegoing 6 лет назад +5

    So well explained!!!

  • @AryaDhayal
    @AryaDhayal 8 лет назад +4

    thank-you 😇

  • @mritunjayy
    @mritunjayy 7 лет назад +5

    okey! right!

  • @vojta6734
    @vojta6734 6 лет назад +2

    Thank you very much, exactly what I needed

  • @briannewman9285
    @briannewman9285 2 года назад

    Can you explain how you went from "try" to "is"? I understand why aha' is in H, but I don't see where you proved it is equal to h'

  • @debendragurung3033
    @debendragurung3033 6 лет назад

    IF H is a abelian Subgroup of some nonabelain Group G, are the coset generated by a in G , aH (or Ha) abelian?

    • @elliotnicholson5117
      @elliotnicholson5117  6 лет назад +2

      No. You can disprove that with a counterexample. Take the non-abelian group s3.

    • @debendragurung3033
      @debendragurung3033 6 лет назад

      Oh yes i see. for H={i,c,c2} and a= t12 not in H, the composition aH={t12,t13,t23} which of course isnt abelian.
      Sweet

  • @christopherrosson2400
    @christopherrosson2400 Год назад

    Okay, I don't understand that first proof