12 - Writing Quadratic Functions in Vertex Form - Part 1 (Graphing Parabolas)

Поделиться
HTML-код
  • Опубликовано: 12 янв 2025

Комментарии • 67

  • @rangarajunanjundagowder4530
    @rangarajunanjundagowder4530 9 месяцев назад +3

    Best best best teacher.His method of teaching is outstanding

  • @rolfbartikowski1836
    @rolfbartikowski1836 4 месяца назад +1

    Hi Jason, I am very glad, you presented this topic. We exchanged views on this a few years ago, when I told you, that to go from general form to vertex form was a very important lesson in german middle and high schools. Extremely well explained! Congratulations and Cheers, Rolf

  • @tesfamariamworku6690
    @tesfamariamworku6690 Год назад +2

    I have seen many professors in many different courses, but you are on top of the list

  • @serenity6616
    @serenity6616 3 года назад +10

    You're just amazing. I'll never say thank you enough to you

  • @juliobaez9721
    @juliobaez9721 9 месяцев назад +2

    Jason is a tremendously articulate instructor.

  • @georgettebeulah4427
    @georgettebeulah4427 5 лет назад +13

    I can real understand what your saying I know how your explanation is and see where it is coming from thank you much

  • @arriarriarri
    @arriarriarri 4 года назад +10

    The first math teacher i've seen with beautiful handwriting :_(

  • @Garrison86
    @Garrison86 3 года назад +9

    can you link the previous videos you are referring to in the video in you description section, that would be mucho appreciated, thank you so much for the comprehendible lessons.

  • @carmelpule8493
    @carmelpule8493 2 года назад +1

    The drawing of this parabola y - k = a( x - h)^2 may be looked upon as ...... Two straight lines (y2 = (x -- h ) multiplied together, then multiplied ( amplified) by a third line y3 = (a) then the answer added ( shifted) to the straight line y4 = k where k, h will be the vertex.
    Looking at a parabola as multiplying two straight lines, then amplifying them, then shifting the products up and down is also a useful way to draw a parabola.

  • @nigihepeace
    @nigihepeace 4 года назад +2

    Superior teacher!!!!! Nice!!

  • @joumanaswailem6245
    @joumanaswailem6245 9 месяцев назад

    Thank you so much for this amazing explanation,
    BTW there's an easier way to solve the 1st eg. And it is
    X2 +2x-3
    X. 3
    X. -1
    We separate the x square
    And the multiplication of C , and that should be the total of bx
    by doing (×+3)(×-1)=0 so it'll be
    ×=-3 & ×=1
    I wish that you understood

  • @lostpineschaptertexasmaste3773
    @lostpineschaptertexasmaste3773 8 месяцев назад

    It makes sense that, if you start with an equation in standard form, you need to convert it to vertex form to get the vertex. That part of the video is great.
    It does NOT make sense to THEN go to the trouble of "foiling" the vertex form back out in order to find the x-intercepts. "Foiling" the vertex form back out ALWAYS takes you right back to the standard form of the equation. In other words (unless you make an error somewhere along the way) you ALWAYS wind up right back with the standard equation you started with. Why do all that work (which takes up probably 5 to 8 minutes of this video) AND take the risk that you'll make an error somewhere? nstead, just pop back to your standard form, set y = 0, and see if you can factor the resulting equation to get the x-intercepts... IF you really need to find the x-intercepts.
    Often though, you don't need to. There is another piece of information one can glean from the standard form of a quadratic equation that Mr. Gibson never mentions. In addition to the value of "a" telling you whether the parabola opens upward or downward, the value "c" tells you the y-intercept.
    Once you know the vertex, and the y-intercept, you can do a quick sketch of the parabola without ever finding the x-intercepts... and you may discover that your parabola doesn't even have any x-intercepts. And, if x-intercepts exist, from your quick graph, you can usually get a good enough "estimate" of where they are to pick out the correct answers on a multiple choice test.
    The quadratic formula is a great tool in real life, and it is often useful on teacher-made tests in class. But if you find yourself having to apply the quadratic equation in the middle of a timed SAT-exam, there is a good chance you've overlooked a simpler method of getting to the solution. The quadratic formula just takes too long and it's too easy to make a calculation error.
    Just my two cents.

  • @elizabethsakine9439
    @elizabethsakine9439 3 года назад +1

    This has helped me so much

  • @ynamanalo9900
    @ynamanalo9900 2 года назад +1

    can you teach us about how you solve quadratic equation word problems?

  • @tavia6265
    @tavia6265 Год назад +1

    this is great info but how would i do f(x)x^2-3x ?

  • @ellaknickerbocker7821
    @ellaknickerbocker7821 2 года назад +2

    thanks, pray i do good on my math exam 🙏

  • @romanemul1
    @romanemul1 5 лет назад +1

    How about posting some making of video how you do your stuff ?

  • @lloyds.2420
    @lloyds.2420 2 года назад

    how do we know a positive constant leads to a parabola opening upwards?

    • @e4va444
      @e4va444 2 года назад

      You can test it out but a positive leading coefficient will always have the parabola opening upwards, you can test it on desmos or other sites. Similarly a negative leading coefficient will always have the parabola openings downwards.

  • @vivicheung4843
    @vivicheung4843 3 года назад

    Thank you so much your hard working

  • @angelayj3272
    @angelayj3272 2 года назад

    This is still so confusing for me. How is the vertex (-3,4) is this equation?: y=2x²+12x+22

  • @dorkle9085
    @dorkle9085 Год назад

    What if I have it in the form of y = ax^2 + b?

    • @vespa2860
      @vespa2860 Год назад

      Do you mean bx?

    • @dorkle9085
      @dorkle9085 Год назад

      @@vespa2860 nope, just B

    • @dorkle9085
      @dorkle9085 Год назад +2

      Also nevermind I figured it out thank you

  • @chandamandona1940
    @chandamandona1940 Год назад

    Thankyou ❤

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+3(2/2)2=x2+2x+(2/2)2

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y-1+2=2(x2-2x+1)

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y-1=2(x2-2x)

  • @shwinside
    @shwinside 3 года назад

    thank you so much!!

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+1=2(x2-2x=1)

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    0=x2+2x+1-4

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    f(x)=ax2+bx+c

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    f(x)=x2+2x-3

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    4=x2+2x+1

  • @iramishra6343
    @iramishra6343 4 года назад +1

    Awesome!!!!

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y=x2+2x-3

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+3=x2+2x

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+3+1=x2+2x+1

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+4=x2=(x)(x)

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+4=(x +1 )(x + 1 )

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+4=(x+1)2

  • @Dereck27
    @Dereck27 3 года назад +1

    Not understanding how you’re getting the vertex at all. So many steps. How can a person be expected to memorize this crap? Man this is frustrating.

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+4=x2+1x+1x+1

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    (x-1)(x+3)=0

  • @Maggie-wz6ez
    @Maggie-wz6ez 4 года назад

    f(x)=-2x^2 +7x
    would i just add a zero as a placeholder for the c term? can anyone help me out I have an exam tomorrow.

    • @MathAndScience
      @MathAndScience  4 года назад +6

      Yes, c=0 in this case because it isn't there. Well, it is really there it is just that "c" is equal to zero!

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    quadratic

  • @Micana1980
    @Micana1980 3 года назад

    Tanx

  • @stellaoffei6114
    @stellaoffei6114 2 года назад

    Wow

  • @jaykumarjoshi5173
    @jaykumarjoshi5173 3 года назад

    You mention to drafting the equation but do show and therefore concept is not clear to my mind only empty words are not enough l do not understand anything of your vidio sorry

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+3+(2/2)2=x2+2x+(2/2)2

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    f(x)=2x2-4x+1

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    0=x2+2x-3

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y-1=2x2-4x

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y=2x2-4x+1

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+1=2(x-1)(x-1)

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+1=2(x-1)2

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+4=(x+1)(x+1)

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    0+1=2(x-1)2

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    0+4=(x+1)2

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    x=1 x= -3

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+1=2(x2-2x+1)

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    1=2x2-4x+2

  • @racquelsabesaje4562
    @racquelsabesaje4562 Год назад

    y+4=x2+2x+1