I Solved A Homemade Functional Equation

Поделиться
HTML-код
  • Опубликовано: 18 янв 2025

Комментарии • 22

  • @TedHopp
    @TedHopp Год назад +2

    The second method is nicer because you don't have to assume a functional form for f(x). It also automatically settles the question of whether any other solutions are possible.

  • @davidmitchell3881
    @davidmitchell3881 Год назад

    This one solves by inspection. Most functional equations that are soluble have solutions of the form ax + b or ax^2 + bx + c. As there is an iterated functional on the left and a square on the right the x^2 term must be zero. Now let x = 0. Both sides of the equation equal zero. This means that the constant term must be zero. Try f(x) = ax. This gives a = 5/2.
    This method doesnt always work but its often worth a try

  • @MarcelCox1
    @MarcelCox1 Год назад

    Note that f(x) is not necessarily a nice function. F can be a function where for each value, you chose whether f(x) is 5x/2 or -5x/2-1. Even if you impose that the function is continues, you still get 2 extra solutions compared to the 2 trivial functions. In fact, at the point x=-2/5, the 2 fonctions cross. So you can chose that to use one of the formulas below -2/5 and the other one for above -2/5. Without the assumption of the function being continues, you can get infintely many non continues functions as solution.

  • @xsimox13
    @xsimox13 Год назад

    It s pretty easy if you see (25x^2+ 10x)/4 can be written as (5x/2)^2 + 5x/2 so f(x) = 5x/2

  • @ManjulaMathew-wb3zn
    @ManjulaMathew-wb3zn 11 месяцев назад

    I found a third method.
    Taking everything to LHS generates a quadratic equation of f(x) with a=1 b=1 and c=-(25x^2+10x)/4
    f(x)=(-1+/- (5x+1))/2
    f(x)=5/2 or -1 -5x/2

  • @MrLidless
    @MrLidless Год назад +4

    Just use the quadratic solution. Ultimately this is all it is.

    • @MrGeorge1896
      @MrGeorge1896 8 месяцев назад

      quadratic formula and realize that 25x² + 10x + 1 is equal to (5x + 1)² so the root and the square cancel out.

  • @mcwulf25
    @mcwulf25 Год назад

    Spotted the two squares 👍

  • @kuriana100
    @kuriana100 Год назад

    Long time that you started with the second method

  • @scottleung9587
    @scottleung9587 Год назад

    Nice!

  • @SidneiMV
    @SidneiMV Год назад

    Quadratic?

  • @honestadministrator
    @honestadministrator Год назад

    Factorization gives
    ( f(x) - 5 x/2) ( f(x) + 5 x /2 + 1) = 0
    f(x) = 5 x /2, - 5 x/2 -1

  • @antonioc5849
    @antonioc5849 Год назад

    The 2nd one is bravo!❤

  • @marcello3621
    @marcello3621 Год назад

    (f(x))² + f(x) = (25x² + 10x)/4
    (f(x))² + f(x) + (-25x² - 10x)/4 = 0
    Discriminant:
    1² - 4 × 1 × (-25x² -10x)/4
    1 + 25x² + 10x
    Now apply in the quadratic formula:
    First solution:
    f(x) = [-1 + √(25x² + 10x + 1)]/2
    f(x) = (-1 + |5x + 1|)/2
    5x + 1 ≥ 0 ⇒ f(x) = 5x/2
    5x + 1 < 0 ⇒ f(x) = (-5x -1 -1)/2 = (-5x -2)/2
    Second solution:
    f(x) = (-1 - |5x + 1|)/2
    5x + 1 ≥ 0 ⇒ f(x) = (- 1 - 5x - 1)/2 = (-5x - 2)/2
    5x + 1 < 0 ⇒ f(x) = (-1 + 5x + 1)/2 = 5x/2
    So the solutions are *f(x) = 5x/2 ∧ f(x) = (-5x - 2)/2*

  • @kianmath71
    @kianmath71 Год назад +1

    F(x) = 2.5x, and f(x) = -2.5x - 1😊

  • @Elden_Jva
    @Elden_Jva Год назад

    Great

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад

    5x/2...-5x/2-1

  • @alextang4688
    @alextang4688 Год назад

    Happy New Year!
    It is obviously that f(x) is a linear equation. We can say it f(x)=ax+b. Then we can solve it by comparing the terms. 😋😋😋😋😋😋

  • @goldfing5898
    @goldfing5898 Год назад

    One obvious solution is f(x) = 5/2*x

  • @broytingaravsol
    @broytingaravsol Год назад

    easy

  • @rakenzarnsworld2
    @rakenzarnsworld2 Год назад

    f(x)=(5/2)x