One Hot Encoder with Python Machine Learning (Scikit-Learn)

Поделиться
HTML-код
  • Опубликовано: 7 янв 2025

Комментарии • 60

  • @RyanAndMattDataScience
    @RyanAndMattDataScience  5 месяцев назад

    Hey guys I hope you enjoyed the video! If you did please subscribe to the channel!
    If you want to watch a full course on Machine Learning check out Datacamp: datacamp.pxf.io/XYD7Qg
    Want to solve Python data interview questions: stratascratch.com/?via=ryan
    I'm also open to freelance data projects. Hit me up at ryannolandata@gmail.com
    *Both Datacamp and Stratascratch are affiliate links.

  • @shivi_was_never_here
    @shivi_was_never_here 8 месяцев назад

    Thanks a lot Ryan! This has to be one of the best videos out here dealing with encoders. If only others were this easy!
    Thanks again.

    • @shivi_was_never_here
      @shivi_was_never_here 8 месяцев назад

      Also, do I have to fit and transform all my sets? Or only the training set? Do I have to fit the test set? Thanks again!

  • @economicslover9534
    @economicslover9534 7 дней назад

    Thank u very much sir.. Love from india❤

  • @omer4826
    @omer4826 9 месяцев назад

    thanks a lot dude! really helped me grasp the basics!

  • @RyanAndMattDataScience
    @RyanAndMattDataScience  Год назад +5

    Have a need for a data project? Email me or fill out the form on my website.
    Looking for the code? Check out the article: Looking for the code? Check out the article: ryannolandata.com/one-hot-encoder/

  • @A-K-I-R-A-
    @A-K-I-R-A- Год назад +1

    Nice tutorial, clean and direct!

  • @charlesmay1610
    @charlesmay1610 2 месяца назад

    Perfect explanation! very helpful :)

  • @aniketshrikondawar6598
    @aniketshrikondawar6598 3 месяца назад +1

    Please make sure all cells are visible on screen. Sometimes not able to view end of cell content.

  • @ahsanjamil1495
    @ahsanjamil1495 4 месяца назад +1

    in case if we have multiple variables which are non-ordinal, do we use the onehotencoder on all the variables at once by adding them to the list initially or do we do this one by one?

  • @ShirHaShiurim-mq1zj
    @ShirHaShiurim-mq1zj 2 месяца назад

    This video was so helpful, thank you. Think you could also make one on frequency encoding and the other types of encoding?

  • @message59
    @message59 11 месяцев назад

    Thanks a lot was a great help :) hope you have a good day

  • @yasminwael-pl5fv
    @yasminwael-pl5fv 3 месяца назад

    thank you very much 💕

  • @shadrinan90
    @shadrinan90 11 месяцев назад

    Great explanation, thanks

  • @ginaross295
    @ginaross295 Год назад

    Thank you so much for this video !!!!

  • @Only_Reality_True
    @Only_Reality_True 2 месяца назад

    Hii...I have an error like OneHotEncoder._init_() got an unexpected keyword argument 'sparse'.... Also I already imported library which are necessary... please tell me what should I do😢

  • @La_mia-r5z
    @La_mia-r5z 7 месяцев назад

    Thank you ❤

  • @alonzoslim
    @alonzoslim Год назад

    This is a great video. Explained in a manner that a newbie like myself can understand. Thank you.
    A question: What if the dataset contains multiple categorical variables (as well as numerical), and they are all required as input to make a prediction. How can one go about it?

    • @RyanAndMattDataScience
      @RyanAndMattDataScience  Год назад +1

      Thank you! There are multiple ways to one hot encode the categorical variables. Check out my titanic video and or the house predictions. I show a few different processes

  • @ayushparwal2004
    @ayushparwal2004 Год назад +1

    thanks buddy it helps me !:)

  • @eyadal-naimi3782
    @eyadal-naimi3782 Год назад

    protect this man

  • @Futureyouth-be1bo
    @Futureyouth-be1bo 6 месяцев назад

    dude how about if i have two different datasets while theier categorical values are different how can i do one hot encoding
    the first one has 9349 rows × 17 columns
    and the second one has 365 rows × 17 columns while if i make one hot encoding they will be produced
    for the first one they become 611 columns of hot encoding
    and the second one become 20 columns please help me how can i do this note the two datasets have Origin and destintion city names

  • @kablamo9999
    @kablamo9999 7 месяцев назад

    Thank you!

  • @juanDoAs
    @juanDoAs Год назад

    Trying your code I get this error: 'AttributeError: 'OneHotEncoder' object has no attribute 'set_output''. Any idea why this is?

  • @AtanasVekiev
    @AtanasVekiev 3 месяца назад

    Very good tutorial, but what about the "dummy variable" trap? I think you should drop one of these new variables.

    • @mehdialaoui1432
      @mehdialaoui1432 2 дня назад

      you're right e should chose one feature as reference to avoid the trap bais of dummy variables

  • @ttdddaa
    @ttdddaa 5 месяцев назад

    thanks dude

  • @neerajchauhan1371
    @neerajchauhan1371 5 месяцев назад

    Thanks buudy

  • @onurdatascience
    @onurdatascience Год назад

    Great video!

  • @swativarsha68
    @swativarsha68 Год назад

    lerant a lot! thanks!!

  • @PhilTag-ml6wd
    @PhilTag-ml6wd 8 месяцев назад

    Stopped a bit short. Need to go through how to use the encoder for predicting and not just setting up for training. eg. enc.transform() on the features you need to run the prediction on . Has been a bit of a pain with the datatype.

    • @Aldotronix
      @Aldotronix 7 месяцев назад

      I don’t know if i understand your comment but you can make a make_pipeline to build all preprocessing steps: use a ColumnTransformer to select the columns to one hot encode and use the one hot encoder. You can cross validate, fit and predict using the pipeline instead of building a model again.

    • @RyanAndMattDataScience
      @RyanAndMattDataScience  6 месяцев назад

      I have some projects that do. I may remake this video in the furture

  • @peidomolhado7016
    @peidomolhado7016 4 месяца назад +1

    skibi learn 😝😝😝

  • @leodexter191
    @leodexter191 6 месяцев назад

    please go lil slow hard to understand

    • @RyanAndMattDataScience
      @RyanAndMattDataScience  6 месяцев назад

      I'll have an article on this soon you can also check out

    • @leodexter191
      @leodexter191 6 месяцев назад

      @@RyanAndMattDataScience thank you

  • @usamaspeakscricket
    @usamaspeakscricket 3 месяца назад

    Thanks buddy