Deriving the formula for angle between two straight lines

Поделиться
HTML-код
  • Опубликовано: 27 дек 2024

Комментарии • 60

  • @mreverything7056
    @mreverything7056 10 месяцев назад +77

    Get yourselves a girl who looks at you the same way Prime Newtons looks at his camera when there's an earthquake XD

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад +14

      🤣🤣🤣🤣🤣🤣🤣🤣

    • @creativename.
      @creativename. 10 месяцев назад +1

      😂

    • @lornacy
      @lornacy 10 месяцев назад +1

      And thanks the Lord.

  • @johnroberts7529
    @johnroberts7529 10 месяцев назад +14

    Your lessons are so beautifully constructed and delivered. Great stuff! Please keep making them.
    😊

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад

      Thank you! Will do!

    • @johnroberts7529
      @johnroberts7529 10 месяцев назад

      You're very welcome.

    • @kragiharp
      @kragiharp 10 месяцев назад

      Yes, very enthusiastic about math and very motivating. 👍
      ❤️🙏

  • @Orillians
    @Orillians 10 месяцев назад +13

    Some day I gotta meet you and thank for you for inpsiring my mathematical passion!!!!!

  • @JSSTyger
    @JSSTyger 10 месяцев назад +20

    Its called a math quake. It happens when chalk rubs harshly against the chalkboard when one gets too excited about doing math.

  • @Jason-ot6jv
    @Jason-ot6jv 10 месяцев назад +1

    I always liked this formula because if you look at it and try things like:
    Limit as m1m2 approach -1, you will get 90 degrees which makes sense since one of the rules for perpendicularl lines is that m1m2 = -1. Also you can do a similar observation when m1 = m2 (parallel lines since same slope) you will get arctan(0) or 0, which also makes sense since the lines are parallel.

  • @stvp68
    @stvp68 10 месяцев назад +4

    Your chalkboard handwriting is so pretty. I wish mine was that nice!

  • @AQIMGame
    @AQIMGame 10 месяцев назад +2

    i was just trying to derive the formula and this video came up couple of minutes later, though ur proof is easier to understand😂

  • @ena6631
    @ena6631 10 месяцев назад

    You are very good. Funny too and expressions entice your students. Well done, more please.

  • @jamal369
    @jamal369 10 месяцев назад +1

    You are so good at teaching. Keep it up!

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад

      Thank you! 😃

    • @jamal369
      @jamal369 10 месяцев назад

      no problem@@PrimeNewtons

  • @chorobatestopografia7689
    @chorobatestopografia7689 3 месяца назад +1

    gracias, por tu clara explicación paso a paso

  • @hvok99
    @hvok99 10 месяцев назад +2

    Ha, loved the cold open. Great video.

  • @lukaskamin755
    @lukaskamin755 10 месяцев назад +1

    Very interesting, never happened to see this formula inferred

  • @henryubah5031
    @henryubah5031 10 месяцев назад

    The man does love his cap.

  • @jadenredd
    @jadenredd 10 месяцев назад +2

    God wanted to make sure you know that we don’t live under Euclidean geometry 😂😂

  • @moseschandiga8496
    @moseschandiga8496 10 месяцев назад

    Enjoyed it very well, thanks dear!

  • @loveyouself5389
    @loveyouself5389 6 месяцев назад

    Wow, aweome man !

  • @Toto-cm5ux
    @Toto-cm5ux 10 месяцев назад

    It's very smart and interesting! However, does it work when beta is equal to pi over two?
    Moreover, I wonder how to justify to put the absolute value on the fraction.

  • @m.h.6470
    @m.h.6470 10 месяцев назад

    Solution:
    Since m describes the slope (m > 0) or dip (m < 0) per unit of x of the respective line, you can easily calculate the angle between that line and the x-axis with tan⁻¹(|m|).
    So the angle between two lines is: (with m₁ ≥ m₂)
    if m₁, m₂ > 0 then tan⁻¹(m₁) - tan⁻¹(m₂)
    if m₁ > 0 > m₂ then tan⁻¹(m₁) + tan⁻¹(-m₂)
    if 0 > m₁, m₂ then tan⁻¹(-m₂) - tan⁻¹(-m₁)

    • @m.h.6470
      @m.h.6470 10 месяцев назад

      The video only shows the solution for m₁, m₂ > 0 😕

  • @BhavaySharma-co2rg
    @BhavaySharma-co2rg 10 месяцев назад +2

    11th std. Student
    ❤ From india❣️

  • @qwertyuiop2161
    @qwertyuiop2161 10 месяцев назад

    Reminds me of problem 11 on AMC12A 2023

  • @lethalsub
    @lethalsub 10 месяцев назад +1

    I was waiting for you to say "...take the magnitude of the earthquake, er tangent...".

  • @JAMESYUN-e3t
    @JAMESYUN-e3t 10 месяцев назад +1

    Excellent

  • @surendrakverma555
    @surendrakverma555 10 месяцев назад

    Thanks 🙏

  • @ahmedabdelkoui3790
    @ahmedabdelkoui3790 10 месяцев назад

    The two parallel lines to the first and passing through the origin have their respective equations: y=mx and y=m'x (y-intercept zero).

  • @josephbaker9932
    @josephbaker9932 10 месяцев назад

    Would it work to take the arctan(m1) = alpha and the arctan(m2) = gamma, then gamma - alpha = beta?

  • @-wx-78-
    @-wx-78- 10 месяцев назад +1

    Orthogonal lines have m₂ = -1/m₁, hence denominator is zero, so we have arctangent of infinity/undefined. 😉
    Line y = m₁x+b₁ is collinear with vector r₁=(1; m₁), second one - with r₂=(1; m₂).
    Scalar product (r₁, r₂) = 1+m₁m₂ = |r₁||r₂|cos Θ
    ⇒ cos Θ = (1+m₁m₂)/(√[1²+m₁²]√[1²+m₂²])
    ⇒ Θ = arccos((1+m₁m₂)/√[(1+m₁²)(1+m₂²)].

  • @aubrey1008
    @aubrey1008 7 месяцев назад

    When these lines are translated to the origin, doesn't b1 and b2 both equal zero?

  • @rssl5500
    @rssl5500 10 месяцев назад

    Nice video :)

  • @budderzmonahan6215
    @budderzmonahan6215 10 месяцев назад

    Would it not be simpler to say that alpha and gamma = arctan of m1 and m2, and beta = gamma -alpha, so beta = arctan m2 - arctan m1? Or is my reasoning flawed?

  • @BartBuzz
    @BartBuzz 10 месяцев назад +1

    Curious why you didn't just move the x-y coordinates to where the two lines intersect and call the transformed coordinates x'-y''? That would eliminate having to draw the added parallel lines. The proof would be the same. I'm assuming you thought a coordinate transformation would confuse some of your viewers?

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад +1

      Oh yeah! I was imagining 9th graders

    • @BartBuzz
      @BartBuzz 10 месяцев назад

      @@PrimeNewtons There are some smart 9th graders if they have understood your Lambert W videos 😉

  • @0llie
    @0llie 10 месяцев назад +7

    no way an earthquake 😭 what are the chances of recording that

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад +3

      I was hoping to see the shaking in the video, but optical stabilization in the camera ruined it 😢

    • @sammascreel
      @sammascreel 10 месяцев назад +1

      @@PrimeNewtons I did hear it

    • @lornacy
      @lornacy 10 месяцев назад

      One. The chance was one. 😂
      (Someone had to say it)

  • @andrejflieger4182
    @andrejflieger4182 10 месяцев назад

    Hmm, didn't you record exactly the same thing just a few days ago, did you?

    • @PrimeNewtons
      @PrimeNewtons  10 месяцев назад

      This is to derive the formula

  • @JourneyThroughMath
    @JourneyThroughMath 10 месяцев назад

    Id say the spherical earth got jealous of the flat plane

  • @holyshit922
    @holyshit922 10 месяцев назад

    Forgot mention what happens when denominator is zero

  • @dinabandhusaha5520
    @dinabandhusaha5520 10 месяцев назад +1

  • @noertri618
    @noertri618 2 месяца назад

    I love geometry

  • @klementhajrullaj1222
    @klementhajrullaj1222 10 месяцев назад

    Never stop earthquake! 😂😀😉

  • @junkgum
    @junkgum 10 месяцев назад

    Them fault lines though

  • @albertofernandez6861
    @albertofernandez6861 10 месяцев назад +1

    y1=m1x+b1
    y2=m2x+b2
    y1'=m1=tan(alfa)
    y2'=m2=tan(alfa+beta)
    tan(alfa+beta)=(tan(alfa)+tan(beta)/(1-tan(alfa)•tan(beta)
    m2=(m1+tan(beta))/(1-m1•tan(beta)
    m2(1-m1•tan(beta)=m1+tan(beta)
    m2-m1•m2•tan(beta)=m1+tan(beta)
    tan(beta)+m1•m2•tan(beta)=m1-m2
    tan(beta)(1+m1•m2)=m1-m2
    tan(beta)=(m1-m2)/(1+m1•m2)
    beta=arcotan(m1-m2)/(1+m1•m2)

  • @comdo777
    @comdo777 10 месяцев назад

    asnwer=2 isit hmm gmm

  • @wintape
    @wintape 2 месяца назад

    qaqas bu ne emosiyadi verirsen zemlyatresenyaya gore da noooldu