Intro to Group Homomorphisms | Abstract Algebra

Поделиться
HTML-код
  • Опубликовано: 16 дек 2024

Комментарии • 40

  • @WrathofMath
    @WrathofMath  2 месяца назад

    Support this course by joining Wrath of Math to access exclusive and early abstract algebra videos, plus lecture notes at the premium tier! ruclips.net/channel/UCyEKvaxi8mt9FMc62MHcliwjoin
    Abstract Algebra Course: ruclips.net/p/PLztBpqftvzxWT5z53AxSqkSaWDhAeToDG
    Abstract Algebra Exercises: ruclips.net/p/PLztBpqftvzxVmiiFW7KtPwBpnHNkTVeJc

  • @liketsontobo8463
    @liketsontobo8463 Год назад +16

    Socratica needs to watch out, your videos are way more clear than any I've seen

    • @WrathofMath
      @WrathofMath  Год назад +6

      That’s a high compliment - thank you! Socratica really is the only competition I can see for well-produced abstract algebra videos, and they’re no longer active on that front. Michael Penn also occasionally makes some excellent algebra content.

  • @Misanthropeee
    @Misanthropeee Год назад +3

    Thank you so much for these!! Been using you to study for finals next week ...

    • @WrathofMath
      @WrathofMath  Год назад +2

      Awesome, I'm glad to help! Good luck next week!

  • @walker9904
    @walker9904 11 месяцев назад

    The Greatest of all times!

  • @yizhan_xzyibo
    @yizhan_xzyibo Год назад +1

    Your vedios are really helpful and simple thankyou ❤️

  • @punditgi
    @punditgi Год назад +3

    Nice explanation! 😊

  • @VijitChandna
    @VijitChandna Год назад +1

    Right on time for my finals!

  • @OmodAkegna
    @OmodAkegna Год назад +1

    Very understandbly explanation

  • @turtius
    @turtius Год назад

    this subject is an absolute nightmare, thanks for making it slightly easier to understand!

    • @turtius
      @turtius Год назад

      @cjjk9142 a bit of exaggeration 😅

    • @WrathofMath
      @WrathofMath  Год назад

      I'm doing my best! Good luck and let me know if you ever have any questions!

    • @MrCoreyTexas
      @MrCoreyTexas 4 месяца назад

      It gets so abstract, it's easy to lose focus of the big picture, and get lost in all the a's,b's,p's and q's!. It's easier to think in concrete terms than in abstract terms (at least for myself, and many people).

  • @MrCoreyTexas
    @MrCoreyTexas 4 месяца назад

    Which element is the identity element in the parity group introduced in the first example? It has to be e for even. I did a quick bing search and you can subsitute +1 for even and -1 for odd and let the group operation be multiplication. It's just a coincidence that 'e' stands for even and happens to be the symbol used as the identity for a general abstract group.

  • @revanthkalavala1829
    @revanthkalavala1829 Год назад

    2) f(a).f(inv(a)) = f(a.inv(a)) = f(e_g) = e_h
    Hence f(inv(a)) is inverse of f(a)

  • @Syrian.Coffee
    @Syrian.Coffee Год назад

    Wonderful video

  • @YoavTamari
    @YoavTamari 5 месяцев назад

    Very good!

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w Год назад

    Thanks!

  • @IslamBelkacemi-y4w
    @IslamBelkacemi-y4w 20 дней назад

    in the non-example, you assumed that the operation is + ?

  • @VijitChandna
    @VijitChandna Год назад +1

    Is the isomorphism video out yet? my exam is in 3 days ;_;

    • @WrathofMath
      @WrathofMath  Год назад +4

      It comes out tonight! Here's an early link just for you! ruclips.net/video/fGqx_-F7zN4/видео.html

  • @teachMathonYoutube
    @teachMathonYoutube 8 месяцев назад

    Example @11.37, the H group should be R instead of R* I think. Else -1 will not be included in H. Correct me if i am wrong.

    • @jakebarnes6161
      @jakebarnes6161 7 месяцев назад +2

      R* just means the reals without 0. So it does include -1

    • @MrCoreyTexas
      @MrCoreyTexas 4 месяца назад

      What was left unsaid by the video creator is, H has to leave out 0 because 0 doesn't have a multiplicative inverse, like 1/1000 has a mult. inverse of 1000, but there's nothing you can multiply 0 to get to 1. Question for big math geeks: Since they defined i as the square root of -1, why can't I define flibbleglobber to be the number you mulitply 0 by to get 1?

  • @shinkansen1907
    @shinkansen1907 2 дня назад

    legend

  • @revanthkalavala1829
    @revanthkalavala1829 Год назад

    1) f(e_g.e_g) = f(e_g) f(e_g)
    f(e_g) = f(e_g)f(e_g)
    Even after applying Group H ooeration, image diesnt change f(e_g) must be an identity element in codomain group H
    Hence,F(e_g) = e_h

  • @ChocolateMilkCultLeader
    @ChocolateMilkCultLeader Год назад

    Wish you created this two weeks ago

    • @WrathofMath
      @WrathofMath  Год назад +5

      Better late than never! Maybe in 7 years I'll have reached my goal of covering a full undergrad curriculum.

  • @MrCoreyTexas
    @MrCoreyTexas 4 месяца назад

    Can anybody find a homomorphism that proves H is a homomorphic image of G in the Example 2?

  • @aperson6389
    @aperson6389 10 месяцев назад

    Based

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w Год назад

    Do we know why such math even came into existence? Seems like their could be practical applications.

    • @MrCoreyTexas
      @MrCoreyTexas 4 месяца назад

      Guys in the 19th century were bored with books, and they had no internet or TV