Abstract Algebra | The motivation for the definition of an ideal.

Поделиться
HTML-код
  • Опубликовано: 23 дек 2024

Комментарии • 16

  • @joetursi9573
    @joetursi9573 2 года назад

    The notion of absorbing is made very clear, finally. Bravo

  • @joetursi9573
    @joetursi9573 3 года назад

    This is great. It really tells more bout Ideals than is usually seen.

  • @GiovannaIwishyou
    @GiovannaIwishyou 3 года назад

    Just what I need right now. Also, this deserves much more views, but I guess competition problems are much more popular :(

  • @albertyeung5787
    @albertyeung5787 2 года назад

    very clear explanation to the concept of ideal

  • @ishitasindhwani
    @ishitasindhwani 2 года назад

    thenk bro

  • @scottmiller2591
    @scottmiller2591 2 года назад +2

    20 seconds into the video, 2 hours of notes from Wikipedia.

  • @АлексейШубин-н8й
    @АлексейШубин-н8й 4 года назад

    Hi, When int (lncosx)^n

  • @ishitasindhwani
    @ishitasindhwani 2 года назад

    no

  • @PubicGore
    @PubicGore 3 года назад +1

    Great video.

  • @CDChester
    @CDChester 4 года назад +6

    An ideal video *bu dum pshhh* okay i'll leave now

  • @Bimallove
    @Bimallove 2 года назад +1

    You go way too fast.

    • @Rafau85
      @Rafau85 Год назад +1

      I like the way he is doing it. Reduce the speed to 0.75 if you want to have it slower.

  • @PubicGore
    @PubicGore 3 года назад +1

    Only five comments? That's a prime number.

    • @lwmarti
      @lwmarti 10 месяцев назад

      15 comments now. That's a number that you could factor with a quantum computer.