Math Olympiad | A Nice Algebra Problem | How to solve for 'X' and 'Y' in this problem?

Поделиться
HTML-код
  • Опубликовано: 3 янв 2025
  • Hello My Dear Family😍😍😍
    I hope you all are well 🤗🤗🤗
    If you like this video about
    How to solve this math problem
    please Like & Subscribe my channel as it helps me alot ,🙏🙏🙏🙏

Комментарии • 43

  • @johnmccullagh2705
    @johnmccullagh2705 9 месяцев назад +2

    Good solid algebra. Yes a bit slow, but for someone like myself who has not done much serious math since student days (half a century ago now), better to include all the steps rather than skip some. And yes, the obvious real solutions from simple inspection are x=2, y=1 and x=1, y=2, however that's not the point of the exercise. Whether it's a good Math Olympiad problem or not, I'm afraid I can't judge.

  • @neel333neel
    @neel333neel 8 месяцев назад +1

    thanks

  • @TWJRPGGamming
    @TWJRPGGamming Год назад +4

    x=2.y=1
    x=1,y=2

  • @АскидаСалимова
    @АскидаСалимова 8 месяцев назад +1

    Это же устно решается, сразу в глаза бросается, что х=1, у=2 или х=2, у=1.

    • @Misha-g3b
      @Misha-g3b 8 месяцев назад

      Hо система может иметь др. решения.

  • @ryanchiang9587
    @ryanchiang9587 11 месяцев назад +2

    x = 2, y = 1 or vice cersa

  • @catiaman208
    @catiaman208 11 месяцев назад

    this has sipleset way since the numbers of X AND Ymyst be integer X+Y=3 RESULT X=1 and Y=2 X5+y5=1+2^5=1+32=33

  • @KipIngram
    @KipIngram 9 месяцев назад

    By "looking at it and thinking for a second," x=2, y=1 and x=1, y=2 are solutions.

  • @guyhoghton399
    @guyhoghton399 Год назад +1

    You can use the identity
    _uₘ₊ₙ = uₘuₙ - uₘ₋ₙ(xy)ⁿ_
    where _uₙ = xⁿ + yⁿ_
    Thus: _u₀ = 2, u₁ = 3, u₅ = 33_
    _u₂ = u₁² - u₀(xy)¹ = 9 - 2xy_
    _u₃ = u₂u₁ - u₁(xy)¹ = 3(9 - 2xy) - 3xy = 27 - 9xy_
    _u₅ = 33 = u₃u₂ - u₁(xy)² = (9 - 2xy)(27 - 9xy) - 3(xy)²_
    ∴ _243 - 135xy + 15(xy)² = 33_
    ⇒ _(xy)² - 9xy + 14 = 0_
    ⇒ _(xy - 2)(xy - 7) = 0_
    ∴ _xy = 2_ or _7_
    Note that _x_ and _y_ are the roots of
    _t² - (x + y)t + xy = 0_
    Case (i): _xy = 2_
    _t² - 3t + 2 = 0_
    ⇒ _(t - 1)(t - 2) = 0_
    ∴ _x, y = 1, 2_ in either order.
    Case (ii): _xy = 7_
    _t² - 3t + 7 = 0_
    ⇒ _t = ½[3 ± √(9 - 28)]_
    ∴ _x, y = ½(3 + √19), ½(3 - √19)_ in either order.

    • @Verdiw
      @Verdiw Год назад

      I graph it in demos , only 2 real sol
      Edit : Sadly at the last part you messed up 9-28 is -19 not 19 so 2 complex roots

  • @neilmccafferty5886
    @neilmccafferty5886 Год назад +9

    you can see it must be 2 and 1 immediately.

  • @markterribile6948
    @markterribile6948 11 месяцев назад

    Who is your audience? Your audience is people who can appreciate and learn what you are showing them. Such people must have mastered high school algebra, and have presumably mastered grade school arithmetic, preparing them to learn the more advanced techniques and principles you are showing them. They--we--don't need to see basic numerical division belabored. They--we--don't need the detailed steps of factoring a quadratic. With the factors given, we need about three seconds to verify them, then we can move on.
    The value in these solutions is the overall scheme, recognizing the larger patterns that we can use to pry the problem apart. But you bury those steps in the minutia that we have already mastered, making it hard to find the precious grains of gold mixed with the dross of first year algebra and fourth grade arithmetic.
    These are brilliant solutions. The presentations would be so much better if you demonstrated the brilliance and moved routinely through the routine mechanics.

  • @prayitsmg7086
    @prayitsmg7086 11 месяцев назад

    X = 1 , Y = 2
    or
    X = 2 , Y = 1

  • @rafielmesaias
    @rafielmesaias 10 месяцев назад

    We have an equation of grade 5. But you have just four roots or solutions por x and y

    • @GFlCh
      @GFlCh 9 месяцев назад

      While it might be nice to see how to work out another solution, it's possible any additional solution would be extraneous, or a duplicate of an existing solution.
      But most importantly, any valid solution for the problem as a whole, has to work in both equations, and another solution to the "x⁵ + y⁵=33" equation, if it exists, might not work in the "x + y = 3" equation.

    • @Misha-g3b
      @Misha-g3b 8 месяцев назад

      Such system has 5 solutions or less.

  • @arturmadatyan4892
    @arturmadatyan4892 11 месяцев назад +2

    Очень простое уровнение, почему так мучается?

    • @Норайр-у7т
      @Норайр-у7т 10 месяцев назад +1

      Надо немножко подумать,потом мучатся,точно !!!

  • @heniwatisetiono6995
    @heniwatisetiono6995 Год назад

    x=1, y=2 or x=2, y=1

  • @wongkienloon
    @wongkienloon 10 месяцев назад

    33+3+33+3=72
    66+6=72
    (66/72) + (6/72)=1=100%

  • @sudarshandutta2498
    @sudarshandutta2498 7 месяцев назад

    X= 2/1, Y=2/1.

  • @MarcelCox1
    @MarcelCox1 11 месяцев назад

    Sorry, but I find your video disappointing for 3 reasons:
    1. You did not specify in which domain you are solving, integers? real numbers? complex numbers?. You solved for complex, but you did not specify in advance. In math alympiads, problems are always specified more precisely. You omitted important information. This is an error often commited by a number of people doing this kind of videos, and I find it hugly annoying.
    2. Your solution is correct but the problem can be solved more easily. In this kind of problems, there are often more efficient approaches than the brute force method. The colculations get easier when you realise that that x5+x5=(x+y)(x4-x3y+x2y2-xy3+y4) and continue from that. You then only need 4th and second powers of (x+y) which makes the fomulas a little bit simpler and thus less error prone.
    3. This comment is mino: state your sources. Like xxx math olympiad problem from yyyy where xxx is the orangisation/country or whatever and dddd is the year.
    For poitn 3, I have the impression that many youtubers just copy the problems from other youtube videos as while there are so many interessing math olympiad problems, you oftend find the same problems over and over again.

  • @ArashHormozi-xx3mu
    @ArashHormozi-xx3mu 11 месяцев назад

    X:2 y:1 or x:1 y:2

  • @Bertin-q3y
    @Bertin-q3y Год назад

    X=2 et Y=1

  • @Bertin-q3y
    @Bertin-q3y 7 месяцев назад

    (1;2) (2;1)

  • @Misha-g3b
    @Misha-g3b 8 месяцев назад

    (1, 2), (2, 1). They €R².

  • @is7728
    @is7728 Год назад

    Can anyone explain why there are only 4 roots, not 5?

    • @Verdiw
      @Verdiw Год назад +2

      An degree n equation doesn’t need to have n distinct root , some can be the same so the amount of root is not more than n

    • @is7728
      @is7728 Год назад +1

      @@Verdiw I know that so which one is the double root?🌲

    • @nemesiochupaca5024
      @nemesiochupaca5024 11 месяцев назад +1

      Porque si sustituyes y=3-x
      Te va a quedar x^5+(3-x)^5-33=0 y el término quíntico se irá, quedando un polinomio de grado 4

  • @supermanusa4828
    @supermanusa4828 10 месяцев назад

    X^5 + Y^5 # (X + Y)^5

  • @BonchoIvanov-b1u
    @BonchoIvanov-b1u 10 месяцев назад

    Supposed to be 5 roots

    • @CrYou575
      @CrYou575 9 месяцев назад

      If you set x = 3-y using equation 2 then the highest term of x^5 is - y^5, which cancels out with y^5 in equation 1. This reduces the problem to solving a quartic and results in four roots.

    • @Misha-g3b
      @Misha-g3b 8 месяцев назад

      5 or less.

  • @Костик-к2т
    @Костик-к2т Год назад

    Х=1, У=2 ; У=2, Х=1.🙉🙉🙉🙉🙉

  • @calcnoon
    @calcnoon 11 месяцев назад

    ・・これを日本の大学入試は
    5分以内で全てやらにゃあかん。
    このスピードでは既に不合格。

  • @williammarshal4043
    @williammarshal4043 11 месяцев назад

    Evaluate before doing all of your shit. If x+y = integers. and x⁵+y⁵= integer then x and y is integer then evaluate b²-4ac, if it's negative, stop. No point of continuing, i^odd integers. Will always has I as result.

  • @edwardwang7929
    @edwardwang7929 Год назад

    ruclips.net/video/7xttRiA6ZVc/видео.html