Solving A Golden Trigonometric Equation (tan^2 x + cos 4x = 0)

Поделиться
HTML-код
  • Опубликовано: 24 янв 2025

Комментарии • 72

  • @MilkoAtchev
    @MilkoAtchev 3 года назад +45

    At the very end you forgot to sqrt the nominator, so the correct answer should be x=arccos(sqrt(1+sqrt5)/2). A neat solution nonetheless!;)

    • @SyberMath
      @SyberMath  3 года назад +8

      That's right! Thanks! 😁

    • @leif1075
      @leif1075 3 года назад +3

      @@SyberMath Dp you honestly think anyone would think of doing that to a sixth degree equation though?? Hope you can please respond when you can.

    • @SyberMath
      @SyberMath  3 года назад +2

      @@leif1075 You mean substituting?

    • @anupchattaraj5039
      @anupchattaraj5039 2 года назад

      Very nice.also if I use the multiple angle formula it may solve more easily.

    • @bart2019
      @bart2019 2 года назад

      Another option would be to use the double angle cosine formula in the other direction than the first time , and use cos 2x instead of cos x to get an answer.

  • @joshuaquezada9363
    @joshuaquezada9363 3 года назад +3

    Awesome video, I was trying to solve it on my own at first but I got stucked when I got those cosines to the 6th and also I didn't know about the notation you used to give the answer. Thanks a lot for sharing this with us, keep doing that

  • @srijanbhowmick9570
    @srijanbhowmick9570 3 года назад +2

    Really nice problem ! I loved it !

  • @piotrokninski2279
    @piotrokninski2279 3 года назад +2

    Great video! I think there might be a quicker way. You can use the formula for the half angle of sine and cosine giving you tan^x=(1-cos2x)/(1+cos2x) and write cos4x=2cos^2x-1. Then you can easily obtain an expression cos2x(cos^2(2x)-cos2x-1)=0 giving you the answer right away.

    • @SyberMath
      @SyberMath  3 года назад +1

      That's a great idea!

    • @engjayah
      @engjayah 3 года назад

      Exactly in the first place I have used the same approach.

    • @wimdevalk
      @wimdevalk 3 года назад

      I gave my own comment before having seen yours. It is exactly the same.

    • @ulrichkaiser3794
      @ulrichkaiser3794 2 года назад

      Isn't it cos2x (cos^2(2x) + cos2x-1) = 0 ???

  • @joaquingutierrez3072
    @joaquingutierrez3072 3 года назад +7

    Thanks for the video!! I did it using a Weierstrass substitution:
    I put tanx = t.
    So cos(2x) = (1 - t^2)/(1 + t^2)
    sin(2x) = 2t/(1 + t^2)
    This allowed me to do the following:
    cos(4x) = cos(2*2x)
    = cos^2(2x) - sin^2(2x)
    By using the expressions for cos(2x) and sin(2x) in terms of t I got a 6 degree polynomial.
    t^6 + 3t^4 - 5t^2 + 1 = 0
    Then I put t^2 = u.
    So I got u^3 + 3u^2 - 5u + 1 = 0
    u = 1 is clearly a solution and I got the other solutions using quadratic formula.
    Theb I got the values of x from the values of u.
    Nice exercise!! :)

    • @SyberMath
      @SyberMath  3 года назад +1

      You're very welcome! Good thinking!

  • @snejpu2508
    @snejpu2508 3 года назад +4

    I chose the obvious but quite long way, which is finding a formula for cos(4x), then substitutions: tan^2(x)=sin^2(x)/cos^2(x) and then sin^2(x)=1-cos^2(x). When I received an equation only with cos(x) I used another substitution: cos^2(x)=t, which gave me an equation for t of 3rd degree, with a root at 1/2. Second solution to this equation is (1+sqrt(5)/4, the third one is negative, which is not possible for real numbers. So, going back, cos(x)=+/-sqrt(2)/2 or cos(x)=+/-sqrt{(1+sqrt(5))/4}. So the solutions for x are just arccos of these values. I know it's pi/4 for the first one an then every pi/2 of course, but for the second one I can't find any "good" angle, so I just left it like this.

  • @akakidzidziguri7947
    @akakidzidziguri7947 3 года назад +2

    Thank you, I appreciate your work❤

    • @SyberMath
      @SyberMath  3 года назад +1

      You are so welcome

    • @mcmage5250
      @mcmage5250 3 года назад +1

      Gagaxara gmertma akaki

    • @SyberMath
      @SyberMath  3 года назад +1

      I hope you're doing well, Akaki! 😊

    • @akakidzidziguri7947
      @akakidzidziguri7947 3 года назад

      @@SyberMath

    • @GravityMaster07
      @GravityMaster07 2 года назад

      ჰეჰ მაგარი ამოცანაა, მართლაც გაგახარა ღმერთმა. მაგრა გამიხარდა ქართული სახელის გაგონება❤️❤️

  • @yusufbashir2890
    @yusufbashir2890 2 года назад

    Hi please I need your help with one trigonometry proving

  • @rkm823
    @rkm823 2 месяца назад

    Two equations for finding value of 'x' and 'y'
    1) ax + by = C
    2) px + qy =C
    (If "C" is the Real Number as 0,1,2,3......).
    Can we write or say.
    "ax+by = px+qy = C"
    ("ax+by = px+qy") ( Because both are equal to "C").
    Is it true or not. please help with example 🙏

  • @MartinPerez-oz1nk
    @MartinPerez-oz1nk 2 года назад

    THANKS PROFESOR!!!, VERY INTERESTING!!!!!

  • @victorchoripapa2232
    @victorchoripapa2232 3 года назад +1

    Hello SyberMath. Well... Very interesting but... At 4:51 you forgot to put +1, so the original equation must be:
    1-(cosx)^2+8(cosx)^6-8(cosx)^4+(cosx)^2+1=0
    Or
    8(cosx)^6-8(cosx)^4+2=0
    Anyway, great video! I learned more about factorization forms👌🏽👌🏽

    • @SyberMath
      @SyberMath  3 года назад

      Yes, you are right

    • @victorchoripapa2232
      @victorchoripapa2232 3 года назад

      Solving it, I found that:
      X1=45°
      X2=135°
      X3=25.915°
      X4=154.085°

  • @tgx3529
    @tgx3529 3 года назад

    (tg x)^2=(1/(cos x)^2)-1. cos 4x=2 (cos2x)^2-1. We use cos2x=2(cosx)^2-1. Then is there (1-2(cosx)^2)+(2(cosx)^2-1+1)(2(cosx)^2-1)^2=0. We can use substitution 2(cos x)^2-1=z. Then we have -z+z^3+z^2=0

  • @HassanLakiss
    @HassanLakiss 3 года назад +1

    What software are you using? Thank you

    • @SyberMath
      @SyberMath  3 года назад

      Notability, screen recording and video zoom

  • @jarikosonen4079
    @jarikosonen4079 3 года назад

    What happens to (1-sqrt(5))/2 ?

  • @sanjaysurya6840
    @sanjaysurya6840 3 года назад +2

    Great 👍.. Keep feeding our intellectual appetite. 💐

  • @aliasgharheidaritabar9128
    @aliasgharheidaritabar9128 3 года назад

    You are great sir.tx

    • @SyberMath
      @SyberMath  3 года назад +1

      Thank you! Trying my best

  • @aashsyed1277
    @aashsyed1277 3 года назад

    WOW THIS IS AMAZING THANKS!

    • @SyberMath
      @SyberMath  3 года назад

      No problem! Thank you!

  • @israelramthianghlima9653
    @israelramthianghlima9653 3 года назад

    If you substitute c^2=u, why do you get a cubic instead of 4th power, or am I missing something?

    • @dr.blockcraft6633
      @dr.blockcraft6633 2 года назад

      c^6
      c^2 = u
      (c^2)^3 = c^2 * c^2 *c^2
      = c^(2*3)
      When pulling Down the Power, you Divide, not Subtract.
      2*3 =6

  • @shanmughansubramani7837
    @shanmughansubramani7837 2 года назад

    At the beginning tan*2in terms of sec2 which is 1/ cos2

  • @jakubabram9606
    @jakubabram9606 3 года назад

    very cool problem

  • @esaul745
    @esaul745 3 года назад

    You could have written otherwise
    1-cos2x
    -----------. + 2Cos²2x-1=0
    1+cos2x
    Multiply both sides on 1+2cos2x
    At last you get
    2cos³2x+2cos²2x-2cos2x=0
    Take 2cos2x behind brackets
    2cos2x(cos²2x+2cos2x-1)=0
    2cos2x=0
    And
    Cos²2x+2cos2x-1=0
    And that's it to the anwser

  • @anilsharma-ev2my
    @anilsharma-ev2my 3 года назад +1

    Shows how actual triangle make it possible ?🕉🕉🕉🕉

  • @hitesh9997638184
    @hitesh9997638184 3 года назад

    In the first step itself, taking cos^2 up will make the equation, a cubic equation in cos(2x)

  • @holyshit922
    @holyshit922 3 года назад

    This value is approximately 26 degrees , so there is no nice value and we need arc cos function

  • @wimdevalk
    @wimdevalk 3 года назад

    I solved the problem in a different and, to my opinion, easier way, by reworking it into factors of cos(2x):
    sin^2(x)/cos^2(x)+cos(4x)=0
    By rewriting:
    cos(4x) into 2·cos^2(2x) − 1,
    sin^2(x) into ½ − ½·cos(2x) and
    cos^2(x) into ½ + ½·cos(2x)
    I got:
    [½ − ½·cos(2x)]/[½ + ½·cos(2x)] + 2·cos^2(2x) − 1 = 0
    Multiplying this equation by [½ + ½·cos(2x)], assuming cos(2x) ≠ −1, so x ≠ π/2 + n·π, resulted into:
    ½ − ½·cos(2x) + [2·cos^2(2x) − 1]·[½ + ½·cos(2x)] = 0
    This can be worked into:
    ½ − ½·cos(2x) − ½·cos(2x) + cos^2(2x) + cos^3(2x) − ½ = 0
    Thus simplified into:
    cos^3(2x) + cos^2(2x) − cos(2x) = 0
    And factorized into:
    cos(2x)·[cos^2(2x) + cos(2x) − 1] = 0
    Which easily leads to a number of solutions for 2x:
    - cos(2x) = 0 => 2x = π/2 + n·π => x = π/4 + n·π/2
    - cos(2x) = −½ ± ½·√(1+4) = −½ ± ½·√5 etcetera
    One more remark: allowing complex values for x will also provide solutions for:
    - cos(2x) = −½ − ½·√5

  • @polarisator9892
    @polarisator9892 3 года назад

    It is easyier, if you solve for cos(2x) first. tan(x)^2 = (1-cos(x)^2)/cos(x)^2 = (1-cos(2x))/(1+cos(2x))
    cos(4x) = 2* cos(2x)^2-1
    cos(2x) =y
    2*y^2-1+(1-y)/(1+y) = 0
    2*y^3+2*y^2-2*y= 0
    1)y=0 =cos(2x) =2*cos(x)^2-1 => cos(x)=+/- sqrt(2)/2
    2) y^2+y-1 = 0; y=(-1 + sqrt(5))/2 [ (-1-sqrt(5))/2 is smaller then -1]
    2*cos(x)^2-1 = (-1+sqrt(5))/2 => cos(x) = +/- sqrt(1+sqrt(5))/2

  • @SousouCell
    @SousouCell 3 года назад

    A fly flies by while doing this ...... and you got it all wrong.🥴

    • @SyberMath
      @SyberMath  3 года назад

      ?

    • @SousouCell
      @SousouCell 3 года назад

      @@SyberMath that means it takes a hell of focus and concentration to get it right ...... even if you choose the right variable change .

    • @SyberMath
      @SyberMath  3 года назад

      @@SousouCell oh ok! 😁

  • @barakathaider6333
    @barakathaider6333 3 года назад

    👍👍

  • @yapsiauwsoengie6507
    @yapsiauwsoengie6507 2 года назад

    I was ended at 8u³-8u²+1=0 and let wolfram solve the rest 😄

  • @esaul745
    @esaul745 3 года назад

    Great job anyways !

  • @KevinAPamwar
    @KevinAPamwar 2 года назад

    Nice...
    Good that you have used Cos(2X) but not effectively
    Here is a simple solution....
    tan^2X = Sin^2X/Cos^2X = { 1-Cos(2X) }/{1+Cos(2X)}
    { 1-Cos(2X) }/{1+Cos(2X)} + 2*Cos(2X)*Cos(2X) -1 =0
    Cos(2X) = Y
    (1-Y)/(1+Y) +2Y*Y-1= 0
    1-Y + (1+Y)*(2Y*Y-1)=0
    1-Y + 2Y*Y-1 + 2Y*Y*Y - Y =0
    2Y*Y*Y + 2Y*Y - 2Y =0
    2Y*(Y*Y + Y -1) =0
    Y =0, (-1+-sqrt(5))/2
    |Y| Y =0, (-1+sqrt(5))/2
    Cos(2X) = 0, 0.62
    2X = 90, 51.8 deg
    X = 45, 25.9 deg

  • @aashsyed1277
    @aashsyed1277 3 года назад

    Hello

  • @dingwahliaw5361
    @dingwahliaw5361 3 года назад

    [tan(x)]^2 + cos(4x)
    = [tan(x)]^2+1-8[sin(x)]^2[cos(x)]^2
    = 1+1-8(4/16)
    =2-2
    =0
    Should be consider x=[n(45degree)]

  • @calmeilles
    @calmeilles 2 года назад

    😀 I've been playing with numerical answers to this for half an hour because I couldn't make it work out right… turned out my dyslexia was transposing 2 numerals in the answers so it _looked_ wrong but was right all the time. Doh!
    The first answer is guessable because tan 45° = 1 and cos 180° = -1 so 0. The second gives us x = acos[(√(1+√5))/2] = 25.9136461864939° In the first quadrant. Then ¹⁄₂π, π & ³⁄₂π of course for 8 total roots.