Algebra - Challenging Question! Can you solve it?

Поделиться
HTML-код
  • Опубликовано: 7 янв 2025

Комментарии • 2

  • @yurenchu
    @yurenchu 20 дней назад +1

    Solve for integers m and n , given
    ³√( 6√45 - 17 ) = m/(√n + 1)
    Lefthandside:
    ³√( 6√45 - 17 ) =
    = ³√( (48√45 - 136) / 8 )
    = ³√( (45√45 + 3√45 - 135 - 1) / 2³ )
    = ³√( (45√45 - 3*45 + 3√45 - 1) / 2³ )
    = ³√( (√45 - 1)³ / 2³ )
    = ³√( [ (√45 - 1)/2 ]³ )
    = (√45 - 1)/2
    Righthandside:
    m/(√n + 1) =
    ... multiply numerator and denominator by (√n - 1) ...
    = [ m*(√n - 1) ] / [ (√n + 1)*(√n - 1) ]
    = [ m*(√n - 1) ] / (n - 1)
    = (√n - 1) * m/(n-1)
    Equating LHS and RHS:
    (√45 - 1)/2 = (√n - 1) * m/(n-1)
    (√45 - 1) * 1/2 = (√n - 1) * m/(n-1)
    ... set n = 45 ...
    1/2 = m/(45 - 1)
    1/2 = m/44
    m = 44*(1/2) = 22
    ==> n = 45 , m = 22