t-SNE tutorial Part1

Поделиться
HTML-код
  • Опубликовано: 5 ноя 2024

Комментарии • 17

  • @MarcusCactus
    @MarcusCactus 5 лет назад

    Slide 4: where does sigma come from? Is the value parametric from outside, or a result of some calculation based on the data?
    And what is perplexity? : Value? Relation to sigma? Role in the equations?
    Thank you for the clear explanations.

    • @NeerajAithani
      @NeerajAithani 5 лет назад

      perplexity- number of points in the neighborhood , whose distance we are preserving

    • @NeerajAithani
      @NeerajAithani 5 лет назад

      sigma is a normalizing factor, it came from same data.

  • @thomasgoeury
    @thomasgoeury 7 лет назад +4

    Thank you for this very instructive video !

  • @isaiasprestes
    @isaiasprestes 6 лет назад +1

    Wow! Good tool for data dim. reduction. Thanks for sharing!

  • @joeljacob3957
    @joeljacob3957 5 лет назад +4

    p(i|i) should be equal to 1 I suppose. because xi-xi=0 and e^0 = 1

    • @JulioLopez-fo2fw
      @JulioLopez-fo2fw 4 года назад

      It sets to zero, since the method are looking for similarity between distinct points.

  • @sagnikgupta7461
    @sagnikgupta7461 4 года назад +1

    please state the relation between perplexity and variance.

  • @s510533
    @s510533 6 лет назад

    Hi, thanks for the great video!
    By the way, in ppt page 5. smaller "coast" for representing widely separated data points...? Is that cost or something?

    • @divykangeyan
      @divykangeyan  6 лет назад

      Thank you! Yes, that is a typo it should be cost.

  • @antonyharnist8673
    @antonyharnist8673 7 лет назад +1

    Thank you for the video! Could you provide a link for the slides please.

    • @divykangeyan
      @divykangeyan  7 лет назад +1

      Hi Antony Harnist, I am glad you liked it! Slides can be found here: github.com/Divyagash/t-SNE/blob/master/tSNE_Presentation.pdf

  • @kutilkol
    @kutilkol 3 года назад

    top!

  • @DanielCruz-kf9bq
    @DanielCruz-kf9bq 4 года назад

    You made one mistake, it is not a conditional probability, it is something like probability from j to i

    • @DarkShadow-tm2dk
      @DarkShadow-tm2dk 4 года назад

      It is condition probability in high dim and joint probability in low dim

    • @DarkShadow-tm2dk
      @DarkShadow-tm2dk 4 года назад

      It basically means prob of point j given point xi