CART Regression Trees Algorithm - Excel part 1

Поделиться
HTML-код
  • Опубликовано: 3 дек 2024

Комментарии • 29

  • @padakoo
    @padakoo 5 лет назад +3

    Thank you for such clear explanation. Google should be showing this as first result when someone looks for Decision Trees - Regression.

  • @alexmauriciorodriguez
    @alexmauriciorodriguez 6 лет назад +4

    Man, this Is so clear, hi from Colombia, I shared this videos to my students I just hope they whatch them.

    • @yahsprut
      @yahsprut 6 лет назад

      agree. you explain so clearly what's happening under the hood of the algorithm

  • @Suigeneris44
    @Suigeneris44 6 лет назад +1

    Wonderful video! Makes things so clear!

  • @galitzhak3511
    @galitzhak3511 6 лет назад +1

    Thanks, very clear and easy to understand

  • @leichu6218
    @leichu6218 2 года назад

    great explanation.wonderful. thank you

  • @KayYesYouTuber
    @KayYesYouTuber 2 года назад

    Great explanation

  • @sajantonge3049
    @sajantonge3049 5 лет назад

    Thank You, this was just too clear that I had to bookmark it ;)

  • @ma.ineslacson1948
    @ma.ineslacson1948 6 лет назад +2

    very good video, the audio is excellent, and the video is indeed awesome. keep up the good work. do you have any video similar to this, but the focus is on classification? i hope you have. God bless

    • @rdjalayer
      @rdjalayer  5 лет назад +1

      please check my channel, I have a few videos on classification algorithms like kNN and Classification Trees

  • @miissJoceLyn
    @miissJoceLyn 2 года назад

    Amazing , thank you ❣

  • @rrrprogram8667
    @rrrprogram8667 6 лет назад +2

    Great video... thanks

  • @sedzinfo
    @sedzinfo 4 года назад

    Thank you very much this is very informative.

  • @rezabarzegar2329
    @rezabarzegar2329 2 года назад

    Thank You!

  • @pkittali
    @pkittali 6 лет назад +2

    Question: If one predictor variable is Continuous, how is it evaluated against the Categorical? Is Categorical chosen over Continuous?

    • @zoxozoxo
      @zoxozoxo 5 лет назад

      perhaps you should categorize.

  • @sharatchandra2045
    @sharatchandra2045 4 года назад

    Excellent

  • @Skandawin78
    @Skandawin78 6 лет назад

    The individual weighted sd is the impurity and the difference from the SD(s) is the gini gain?

  • @ckeong9012
    @ckeong9012 6 лет назад

    great video. It would be great if you could show us another split from the child node that you gained. Thanks

  • @Fred-F4
    @Fred-F4 4 года назад

    you need to proportionally add sum of squared residuals (or variance) not the standard deviation of the leafs.

  • @andyrogish4937
    @andyrogish4937 4 года назад

    How important is normality to your example, and to CART at large?

  • @Suigeneris44
    @Suigeneris44 6 лет назад

    Can you please share the worksheet?

  • @kalyanasundaramsp8267
    @kalyanasundaramsp8267 6 лет назад +1

    super

  • @mimalife1749
    @mimalife1749 6 лет назад

    Svp la partie finale de cet algorithme ,the last part for this algorithm

  • @gurubuxgill
    @gurubuxgill 5 лет назад

    Thanks for the explanation
    Question : Can we use the P-value to choose the most prominent among all predictors ?

    • @reneeliu6676
      @reneeliu6676 5 лет назад

      In general, P-values are not used for feature selection.

  • @flamboyantperson5936
    @flamboyantperson5936 6 лет назад +1

    Hi, why Excel? I have been waiting for your new videos on R. Please do machine learning, deep learning, neural network in R. Thank you so much

  • @miodragvulicevic9317
    @miodragvulicevic9317 5 лет назад

  • @maitripatel9327
    @maitripatel9327 6 лет назад

    your video is too much irritating and doesn't at all clear the concept .