A deceivingly tough integral

Поделиться
HTML-код
  • Опубликовано: 5 фев 2025
  • If you like the videos and would like to support the channel:
    / maths505
    You can follow me on Instagram for write ups that come in handy for my videos:
    ...

Комментарии • 36

  • @bartekabuz855
    @bartekabuz855 Год назад +42

    tan(pi/8)=sin(pi/4)/(1+cos(pi/4))=sqtr(2)-1 you could have used that

  • @holyshit922
    @holyshit922 Год назад +12

    We can also calculate indefinite integral by substitution
    u = x/sqrt(1+sqrt(1+x^4))
    This substitution will rationalize integrand

  • @MrWael1970
    @MrWael1970 Год назад +4

    tedious integral, but stunning solution. Thank you.

  • @NurBiswas-fc6ty
    @NurBiswas-fc6ty Год назад +4

    This channel is really phenomenal.

  • @holyshit922
    @holyshit922 Год назад +5

    We can also simplify integrand by integration by parts twice
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2Int(x/sqrt(1+sqrt(1+x^4))*(2x^3/sqrt(1+x^4)))
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-Int(x^4/(sqrt(1+sqrt(1+x^4))*sqrt(1+x^4)),x)
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2*Int(2x^3/sqrt(1+x^4)*x/sqrt(1+sqrt(1+x^4)),x)
    d/dx x/sqrt(1+sqrt(1+x^4)) = (sqrt(1+sqrt(1+x^4)) - x*1/2*1/sqrt(1+sqrt(1+x^4))*2x^3/sqrt(1+x^4))/(1+sqrt(1+x^4))
    d/dx x/sqrt(1+sqrt(1+x^4)) = ((1+sqrt(1+x^4)) - x^4/sqrt(1+x^4))/((1+sqrt(1+x^4))*sqrt(1+sqrt(1+x^4)))
    d/dx x/sqrt(1+sqrt(1+x^4)) = (sqrt(1+x^4)+1+x^4 - x^4)/((1+sqrt(1+x^4))*sqrt(1+sqrt(1+x^4))*sqrt(1+x^4))
    d/dx x/sqrt(1+sqrt(1+x^4)) = (1+sqrt(1+x^4))/((1+sqrt(1+x^4))*sqrt(1+sqrt(1+x^4))*sqrt(1+x^4))
    d/dx x/sqrt(1+sqrt(1+x^4)) = 1/(sqrt(1+sqrt(1+x^4))*sqrt(1+x^4))
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2*(x*sqrt(1+x^4)/sqrt(1+sqrt(1+x^4)) - Int(sqrt(1+x^4)*1/(sqrt(1+sqrt(1+x^4))*sqrt(1+x^4)),x)
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2*x*sqrt(1+x^4)/sqrt(1+sqrt(1+x^4))+1/2*Int(1/sqrt(1+sqrt(1+x^4)),x)
    Now we can substitute u=x/sqrt(1+sqrt(1+x^4)) and it will be a liitle less calculations

    • @shieldmytears
      @shieldmytears Год назад +6

      omg u typed that all out?

    • @holyshit922
      @holyshit922 Год назад +1

      If we like Euler substitutions second one will be good option
      sqrt(1+x^4)=x^2u^2-1
      In fact this is reciprocal of substitution which i previously proposed

    • @Aditya_196
      @Aditya_196 9 месяцев назад

      Reading all that is gonna be hell painful

  • @DrAYOUBZ
    @DrAYOUBZ Год назад +14

    you're one of the amazing mathematics channel which i'm studying hard with them , thank prof

  • @manstuckinabox3679
    @manstuckinabox3679 Год назад +1

    Get out of here... get out. that video should go down on why this channel is for the absolute mad men, and I can't be more happier to be part of it LOL! great video as always my dude.

  • @slavinojunepri7648
    @slavinojunepri7648 Год назад

    Amazing solution

  • @ishu4535
    @ishu4535 Год назад +1

    Amazing Video Sir

  • @pluieuwu
    @pluieuwu Год назад +1

    this is ridiculously cool.

  • @aryaghahremani9304
    @aryaghahremani9304 Год назад

    this integral looks like when the professor is on vacation and the TA gives the homework instead

  • @firmkillernate
    @firmkillernate Год назад +1

    Integrals are the best puzzles

  • @arthurc.1832
    @arthurc.1832 Год назад

    Awesome!!!

  • @MohamedachrafKadim-jm5yr
    @MohamedachrafKadim-jm5yr Год назад +1

    Nice bro

  • @bartekabuz855
    @bartekabuz855 Год назад

    W for using Wolfram alpha for partial fraction

  • @dzuchun
    @dzuchun Год назад

    just a normal problem they throw at you in your first year 😢

  • @giuseppemalaguti435
    @giuseppemalaguti435 Год назад

    I=-arctgu-arcthu+4(u+(2/5)u^5+(3/9)u^9+(4/13)u^13+(5/17)u^17...u=sqrt (sqrt2-1)...=1,4449..l'ultima parte è una serie binomiale,non ho trovato di meglio..Thanks for the integrals

  • @ulfatunnegar7689
    @ulfatunnegar7689 Год назад

    Bro, Make videos on I.M.O problems

  • @anupamamehra6068
    @anupamamehra6068 Год назад

    hi couldnt we have used integration by parts? like we have that sec^2x term inside the integral which is nicely the derivative of tanx wrtx

  • @notesfromundergroundenjoyer
    @notesfromundergroundenjoyer Год назад

    2.5

  • @petrie911
    @petrie911 Год назад

    This can be considerably simplified through the application of trig identities. Letting w = 2^(-1/4), we have
    I = (2sqrt(sqrt(2) + 1) + arccosh(sqrt(2) + 1) + arccos(sqrt(2) - 1))/4
    = (sqrt(w^2 + 1)/w + arcsinh(w) + arccos(w))/2
    As for the derivation, for brevity, I'll write T = tan(pi/8). The logarithm term is equivalently 2 arctanh(sqrt(tan(pi/8)). Then we can use cosh(2 arctanh(x)) = (1+x^2)/(1-x^2) and cos(2 arctan(x)) = (1-x^2)/(1+x^2), meaning those terms are equivalently arccosh((1 + T)/(1-T)) and arccos((1-T)/(1+T)). Then we can use (1 + tan(x))/(1-tan(x)) = tan(x + pi/4) to simplify to arccosh(1/T) and arccos(T). Now we can use T = sqrt(2) - 1 to simplify the fraction term to get the first form above. Applying the half-angle identities to the inverse trig terms then gets the second.
    Using the above method, we can also get an explicit antiderivative of the original function. It comes out to
    (2x sqrt(1 + sqrt(1 + x^4)) + arccosh(sqrt(1 + x^4) + x^2) + arccos(sqrt(1 + x^4) - x^2)) / 4
    which gives the value above when x = 1. I leave verification that the above differentiates to the integrand as an exercise to the reader.
    It should also be noted that the expressions inside the inverse trig functions are tangent half-angle formulae, but I can't seem to figure out a way to further simplify.

  • @The_Shrike
    @The_Shrike Год назад

    Hi, the new layout you use for the problems makes it so I can’t view the whole thing in full screen on mobile. Idk if you know what I’m talking about, but the issue only appears on the newer videos.

    • @maths_505
      @maths_505  Год назад

      I forgot to use the full screen mode on the notes app for this video. Sorry about that I'll fix it for tomorrow's video

  • @MortezaSabzian-db1sl
    @MortezaSabzian-db1sl Год назад

    Like 👍

  • @laurencewigton2463
    @laurencewigton2463 Год назад

    If u=Sqrt[1+x^4] then Mathematica gives:
    Integrate[Sqrt[1+u],x] = (1/2)*(x*Sqrt[1+u] + ArcTan[x/Sqrt[1+u]] + ArcTanh[x/Sqrt[1+u]])

  • @koendos3
    @koendos3 Год назад +1

    Do you have yor tablet already?

  • @yoav613
    @yoav613 Год назад

    (Almost) impossible integral 😃💯