A deceivingly tough integral

Поделиться
HTML-код
  • Опубликовано: 29 авг 2023
  • If you like the videos and would like to support the channel:
    / maths505
    You can follow me on Instagram for write ups that come in handy for my videos:
    maths.505?igshi...

Комментарии • 36

  • @bartekabuz855
    @bartekabuz855 11 месяцев назад +41

    tan(pi/8)=sin(pi/4)/(1+cos(pi/4))=sqtr(2)-1 you could have used that

  • @daddy_myers
    @daddy_myers 11 месяцев назад +10

    My dad always told me not to stick it in crazy, now I know exactly why he told me that.

    • @maths_505
      @maths_505  11 месяцев назад +2

      😂😂

    • @daddy_myers
      @daddy_myers 11 месяцев назад +1

      Great integral, bro.
      One ick I had about it was that it didn't evaluate to a nice value at the end and instead ended up with a bunch of radicals; however, apart from that, the integral was 🔥🔥.

    • @maths_505
      @maths_505  11 месяцев назад +1

      @@daddy_myers this integral really did take by surprise. The journey with all those transformations was awesome but the simplification towards the end really was annoying.

  • @holyshit922
    @holyshit922 11 месяцев назад +11

    We can also calculate indefinite integral by substitution
    u = x/sqrt(1+sqrt(1+x^4))
    This substitution will rationalize integrand

  • @DrAYOUBZ
    @DrAYOUBZ 11 месяцев назад +13

    you're one of the amazing mathematics channel which i'm studying hard with them , thank prof

  • @MrWael1970
    @MrWael1970 10 месяцев назад +3

    tedious integral, but stunning solution. Thank you.

  • @NurBiswas-fc6ty
    @NurBiswas-fc6ty 10 месяцев назад +3

    This channel is really phenomenal.

  • @holyshit922
    @holyshit922 10 месяцев назад +4

    We can also simplify integrand by integration by parts twice
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2Int(x/sqrt(1+sqrt(1+x^4))*(2x^3/sqrt(1+x^4)))
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-Int(x^4/(sqrt(1+sqrt(1+x^4))*sqrt(1+x^4)),x)
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2*Int(2x^3/sqrt(1+x^4)*x/sqrt(1+sqrt(1+x^4)),x)
    d/dx x/sqrt(1+sqrt(1+x^4)) = (sqrt(1+sqrt(1+x^4)) - x*1/2*1/sqrt(1+sqrt(1+x^4))*2x^3/sqrt(1+x^4))/(1+sqrt(1+x^4))
    d/dx x/sqrt(1+sqrt(1+x^4)) = ((1+sqrt(1+x^4)) - x^4/sqrt(1+x^4))/((1+sqrt(1+x^4))*sqrt(1+sqrt(1+x^4)))
    d/dx x/sqrt(1+sqrt(1+x^4)) = (sqrt(1+x^4)+1+x^4 - x^4)/((1+sqrt(1+x^4))*sqrt(1+sqrt(1+x^4))*sqrt(1+x^4))
    d/dx x/sqrt(1+sqrt(1+x^4)) = (1+sqrt(1+x^4))/((1+sqrt(1+x^4))*sqrt(1+sqrt(1+x^4))*sqrt(1+x^4))
    d/dx x/sqrt(1+sqrt(1+x^4)) = 1/(sqrt(1+sqrt(1+x^4))*sqrt(1+x^4))
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2*(x*sqrt(1+x^4)/sqrt(1+sqrt(1+x^4)) - Int(sqrt(1+x^4)*1/(sqrt(1+sqrt(1+x^4))*sqrt(1+x^4)),x)
    Int(sqrt(1+sqrt(1+x^4)),x) = x*sqrt(1+sqrt(1+x^4))-1/2*x*sqrt(1+x^4)/sqrt(1+sqrt(1+x^4))+1/2*Int(1/sqrt(1+sqrt(1+x^4)),x)
    Now we can substitute u=x/sqrt(1+sqrt(1+x^4)) and it will be a liitle less calculations

    • @uvtears
      @uvtears 10 месяцев назад +5

      omg u typed that all out?

    • @holyshit922
      @holyshit922 10 месяцев назад

      If we like Euler substitutions second one will be good option
      sqrt(1+x^4)=x^2u^2-1
      In fact this is reciprocal of substitution which i previously proposed

    • @Aditya_196
      @Aditya_196 3 месяца назад

      Reading all that is gonna be hell painful

  • @ishu4535
    @ishu4535 11 месяцев назад +1

    Amazing Video Sir

  • @slavinojunepri7648
    @slavinojunepri7648 11 месяцев назад

    Amazing solution

  • @pluieuwu
    @pluieuwu 11 месяцев назад +1

    this is ridiculously cool.

  • @arthurc.1832
    @arthurc.1832 10 месяцев назад

    Awesome!!!

  • @aryaghahremani9304
    @aryaghahremani9304 11 месяцев назад

    this integral looks like when the professor is on vacation and the TA gives the homework instead

  • @MohamedachrafKadim-jm5yr
    @MohamedachrafKadim-jm5yr 11 месяцев назад +1

    Nice bro

  • @anupamamehra6068
    @anupamamehra6068 11 месяцев назад

    hi couldnt we have used integration by parts? like we have that sec^2x term inside the integral which is nicely the derivative of tanx wrtx

  • @bartekabuz855
    @bartekabuz855 11 месяцев назад

    W for using Wolfram alpha for partial fraction

  • @firmkillernate
    @firmkillernate 11 месяцев назад

    Integrals are the best puzzles

  • @manstuckinabox3679
    @manstuckinabox3679 10 месяцев назад

    Get out of here... get out. that video should go down on why this channel is for the absolute mad men, and I can't be more happier to be part of it LOL! great video as always my dude.

  • @dzuchun
    @dzuchun 10 месяцев назад

    just a normal problem they throw at you in your first year 😢

  • @The_Shrike
    @The_Shrike 11 месяцев назад

    Hi, the new layout you use for the problems makes it so I can’t view the whole thing in full screen on mobile. Idk if you know what I’m talking about, but the issue only appears on the newer videos.

    • @maths_505
      @maths_505  11 месяцев назад

      I forgot to use the full screen mode on the notes app for this video. Sorry about that I'll fix it for tomorrow's video

  • @ulfatunnegar7689
    @ulfatunnegar7689 10 месяцев назад

    Bro, Make videos on I.M.O problems

  • @laurencewigton2463
    @laurencewigton2463 11 месяцев назад

    If u=Sqrt[1+x^4] then Mathematica gives:
    Integrate[Sqrt[1+u],x] = (1/2)*(x*Sqrt[1+u] + ArcTan[x/Sqrt[1+u]] + ArcTanh[x/Sqrt[1+u]])

  • @giuseppemalaguti435
    @giuseppemalaguti435 10 месяцев назад

    I=-arctgu-arcthu+4(u+(2/5)u^5+(3/9)u^9+(4/13)u^13+(5/17)u^17...u=sqrt (sqrt2-1)...=1,4449..l'ultima parte è una serie binomiale,non ho trovato di meglio..Thanks for the integrals

  • @notesfromundergroundenjoyer
    @notesfromundergroundenjoyer 10 месяцев назад

    2.5

  • @yoav613
    @yoav613 11 месяцев назад

    (Almost) impossible integral 😃💯

  • @MortezaSabzian-db1sl
    @MortezaSabzian-db1sl 10 месяцев назад

    Like 👍

  • @koendos3
    @koendos3 10 месяцев назад +1

    Do you have yor tablet already?

  • @petrie911
    @petrie911 10 месяцев назад

    This can be considerably simplified through the application of trig identities. Letting w = 2^(-1/4), we have
    I = (2sqrt(sqrt(2) + 1) + arccosh(sqrt(2) + 1) + arccos(sqrt(2) - 1))/4
    = (sqrt(w^2 + 1)/w + arcsinh(w) + arccos(w))/2
    As for the derivation, for brevity, I'll write T = tan(pi/8). The logarithm term is equivalently 2 arctanh(sqrt(tan(pi/8)). Then we can use cosh(2 arctanh(x)) = (1+x^2)/(1-x^2) and cos(2 arctan(x)) = (1-x^2)/(1+x^2), meaning those terms are equivalently arccosh((1 + T)/(1-T)) and arccos((1-T)/(1+T)). Then we can use (1 + tan(x))/(1-tan(x)) = tan(x + pi/4) to simplify to arccosh(1/T) and arccos(T). Now we can use T = sqrt(2) - 1 to simplify the fraction term to get the first form above. Applying the half-angle identities to the inverse trig terms then gets the second.
    Using the above method, we can also get an explicit antiderivative of the original function. It comes out to
    (2x sqrt(1 + sqrt(1 + x^4)) + arccosh(sqrt(1 + x^4) + x^2) + arccos(sqrt(1 + x^4) - x^2)) / 4
    which gives the value above when x = 1. I leave verification that the above differentiates to the integrand as an exercise to the reader.
    It should also be noted that the expressions inside the inverse trig functions are tangent half-angle formulae, but I can't seem to figure out a way to further simplify.