a general integral family

Поделиться
HTML-код
  • Опубликовано: 11 фев 2025
  • 🌟Support the channel🌟
    Patreon: / michaelpennmath
    Channel Membership: / @michaelpennmath
    Merch: teespring.com/...
    My amazon shop: www.amazon.com...
    🟢 Discord: / discord
    🌟my other channels🌟
    mathmajor: / @mathmajor
    pennpav podcast: / @thepennpavpodcast7878
    🌟My Links🌟
    Personal Website: www.michael-pen...
    Instagram: / melp2718
    Twitter: / michaelpennmath
    Randolph College Math: www.randolphcol...
    Research Gate profile: www.researchga...
    Google Scholar profile: scholar.google...
    🌟How I make Thumbnails🌟
    Canva: partner.canva....
    Color Pallet: coolors.co/?re...
    🌟Suggest a problem🌟
    forms.gle/ea7P...

Комментарии • 44

  • @manucitomx
    @manucitomx Год назад +24

    Gamma Functions, gnarly π’s, all that was missing was a backflip.
    Thank you, professor.

  • @GiornoYoshikage
    @GiornoYoshikage Год назад +18

    This is integral is the way to prove the gamma function reflection formula. I did it using the power of contour integration!

    • @shbu4477
      @shbu4477 Год назад

      Hi there, could you please take the trouble to outline the process? can’t figure it out myself

  • @MrMctastics
    @MrMctastics Год назад +24

    yo this integral pops off son

  • @nathanmenezes7914
    @nathanmenezes7914 Год назад +1

    Easier method is to sub u=x^b and use the beta function

  • @kokainum
    @kokainum Год назад +11

    Well, not all arguements hold unless you assume a,b>0 in the first place. I thought we're gonna find all real a and b where it converges. First time you do it on 1:27 where you assume b>0. And then when you use limit comparison you also assume b>0, otherwise you couldn't use it (separate case would be needed).

    • @arbel8160
      @arbel8160 Год назад

      He said it was for the viewers to verify

  • @djttv
    @djttv Год назад +5

    A video suggestion: details on the labert W function. Can it be differentiated, can it be expressed explicitly somehow, what properties does it have?

  • @BramCohen
    @BramCohen Год назад

    The usage of a-1 instead of a kind of gives away that this is specifically structured for something magical to happen

  • @mollejalopez8012
    @mollejalopez8012 Год назад +2

    Interesante todo. En muchos libros te ponen a calcular integrales de ese tipo, sin dar el fundamento de las constantes involucradas. No es la primera vez que él convierte la integral de una variable a una de dos variables como auxiliar, llegando al resultado elegantemente. ❤

  • @GeoffryGifari
    @GeoffryGifari Год назад +2

    Hmmm... the integral from 0 to infinity is larger than the one from 0 to 1, if the integrand doesn't end up hitting 0 and be negative from there, right?

  • @Jack_Callcott_AU
    @Jack_Callcott_AU Год назад

    This is a very useful formula...thanks Prof. 🌩⚡

  • @vasilisr7
    @vasilisr7 Год назад +1

    Amazing result seriously

  • @Happy_Abe
    @Happy_Abe Год назад +3

    @1:20 that assumes b is non-negative. If b were negative this wouldn’t necessarily be true.

    • @PhilBoswell
      @PhilBoswell Год назад

      but b>a>0 so both a and b are non-negative, or am I missing something?

    • @Happy_Abe
      @Happy_Abe Год назад

      @@PhilBoswell why is b>a>0?

  • @goodplacetostop2973
    @goodplacetostop2973 Год назад +13

    13:24

  • @dihinamarasinghe9278
    @dihinamarasinghe9278 Год назад +3

    Awesome integral and even more awesome solution but this integral can be more conveniently solved by the method of complex analysis (with the aid of the pizza contour )

  • @Lakedaimōn-h8j
    @Lakedaimōn-h8j Год назад +1

    I think this series also converges as 0>a>b.

  • @Bodyknock
    @Bodyknock Год назад +4

    Was there supposed to be an assumption that b is positive? At 1:20 for instance it's assumed xᵇ < 1 if x

    • @Happy_Abe
      @Happy_Abe Год назад +1

      I have same question

    • @Jack_Callcott_AU
      @Jack_Callcott_AU Год назад

      I think that assumption was made for the sake of proof, and later it was shown to be implied by the restriction on a...possibly?

    • @Bodyknock
      @Bodyknock Год назад +1

      @@Jack_Callcott_AU The thing is in the beginning he implicitly assumed b>0 to prove a>0, then afterward used the fact that a>0 to prove b>0. So I think he accidentally used some circular reasoning there.

    • @Jack_Callcott_AU
      @Jack_Callcott_AU Год назад +1

      @@Bodyknock Thanks for the reply. I'll have to watch the video again and think about it a little bit more. I must say I really did enjoy the video, and it is an important formula that he derived. 👍

    • @Happy_Abe
      @Happy_Abe Год назад

      @@Bodyknock yes I’m confused by that circular reasoning as well. He never really showed why b can’t be negative, he said it clearly won’t converge then but not sure why

  • @Calcprof
    @Calcprof 6 месяцев назад

    Mellin transform! Mellin transform!

  • @fortetwomusic
    @fortetwomusic Год назад

    Missing a gamma flip!

  • @writerightmathnation9481
    @writerightmathnation9481 Год назад

    A fun but not too difficult variant of this is to determine convergence or divergence of the series
    \Sum_{n=1}^{\infty}\int_1^{\infty}\frac{x^{a-k}}{1+x^b}dx

  • @landsgevaer
    @landsgevaer Год назад +1

    Wouldn't a simpler start have been
    INT x^(a-1) / (1+x^b) d x =
    1/a INT 1 / (1+x^b) d x^a =
    1/a INT 1 / (1+u^(b/a)) d u
    which then only requires the function 1/(1+u^k) to be integrated over u, i.e. with a single variable.
    Admittedly, I am not sure how to do that, but looks like it might be some standard integral (wolfram alpha does it for specific b/a > 1).

    • @Otanes_Yu
      @Otanes_Yu Год назад +2

      We can use B(x,y)=INT t^(x-1)/(1+t)^(x+y) dt=Gamma(x)Gamma(y)/Gamma(x+y)

    • @landsgevaer
      @landsgevaer Год назад

      @@Otanes_Yu How is the integrand 1/(1+t^k) related to 1/(1+t)^k then?

    • @Otanes_Yu
      @Otanes_Yu Год назад

      @@landsgevaer set t^k=u to get 1/(1+u) then it is related to B(x,(1-x))

  • @armansimonyan5772
    @armansimonyan5772 Год назад

    But doesn’t the sign in the comparison test(2:10) have to be less than for the test being applicable? I mean the integral is convergent if the bigger one is convergent and not smaller.

  • @AntoshaPushkin
    @AntoshaPushkin Год назад

    At the very beginning integral from 0 to 1 would easily converge with a = 0 and b = -1

  • @siquod
    @siquod Год назад +1

    This reminds me of Baker-Nachbaur type integrals of the second kind.

  • @47lokeshkumar74
    @47lokeshkumar74 Год назад +1

    Solve without gamma function

  • @richardheiville937
    @richardheiville937 Год назад +1

    In fact, you have proved the main formula for Beta function.

  • @BikeArea
    @BikeArea Год назад

    When backflip?

  • @EyadAmmari
    @EyadAmmari Год назад +1

    Very nice.

  • @Noam_.Menashe
    @Noam_.Menashe Год назад

    Wouldn't this be easier with the beta function? Just substitute X^a.