Math and Movies (Animation at Pixar) - Numberphile

Поделиться
HTML-код
  • Опубликовано: 10 ноя 2014
  • How do 3D animated characters look so smooth? Pixar researcher Tony DeRose explains - with mathematics.
    More links & stuff in full description below ↓↓↓
    Extra footage: • More from Numberphile'...
    Links below...
    Pixar Research: graphics.pixar.com/research/
    Tony DeRose papers: bit.ly/DeRosePapers
    Ed Catmull's paper: bit.ly/1stJNht
    Support us on Patreon: / numberphile
    NUMBERPHILE
    Website: www.numberphile.com/
    Numberphile on Facebook: / numberphile
    Numberphile tweets: / numberphile
    Subscribe: bit.ly/Numberphile_Sub
    Numberphile is supported by the Mathematical Sciences Research Institute (MSRI): bit.ly/MSRINumberphile
    Videos by Brady Haran
    Brady's videos subreddit: / bradyharan
    Brady's latest videos across all channels: www.bradyharanblog.com/
    Sign up for (occasional) emails: eepurl.com/YdjL9
    Numberphile T-Shirts: teespring.com/stores/numberphile
    Other merchandise: store.dftba.com/collections/n...
  • НаукаНаука

Комментарии • 524

  • @brianpso
    @brianpso 9 лет назад +44

    "My back pocket". The line and his face while saying it were priceless. Best answer ever lol

  • @wolgercon
    @wolgercon 9 лет назад +82

    To infinity and beyond appears less impressive when you realize infinity is just one step away from where you started.

  • @lesconrads
    @lesconrads 9 лет назад +94

    This was a super smooth interview. I love how well rehearsed it was, probably because he has explained that stuff dozens and dozens of times. Really nice to watch. (Not to discredit the editing which probably helped too)

    • @numberphile
      @numberphile  9 лет назад +15

      lesconrads no discredit taken, Tony is just really good!

    • @jamez6398
      @jamez6398 9 лет назад +2

      Numberphile Well he is American.

    • @RareCandeh
      @RareCandeh 8 лет назад +14

      James Oldfield What does being American have to relate to any of this

    • @Seansplayground
      @Seansplayground 8 лет назад

      ygyuu7 NVuu

    • @Seansplayground
      @Seansplayground 8 лет назад

      ygyuu7 NVuuio

  • @Viniter
    @Viniter 9 лет назад +161

    Wait a moment... Ed Catmull is the President of Pixar? The Catmull-Clark Catmull? I studied the Catmull-Clark subdivision the other year, but I never imagined the person behind it would also be responsible for some of my favourite movies. You sort of imagine an old dude in a small room of some university, when you think about the name behind an algorithm. You don't connect the people coming up with theories with the ones who put them into practice, although it makes so much sense This is awesome! :-)

    • @Meloncov
      @Meloncov 9 лет назад +19

      Yep, same guy. Pixar was founded as the computer graphics research wing of Lucasfilm, and in those first couple years they laid a ton of the groundwork for computer graphics.

    • @brianfreestone7872
      @brianfreestone7872 5 лет назад +1

      And, he went to the University of Utah. Go Utes!

    • @thhm
      @thhm 2 года назад +2

      "old dude in a university." lol thats also how i thought of him while learning about shaders, so this also blew my mind.

    • @nathanieleulin127
      @nathanieleulin127 Год назад

      As a computer science student, I'm thrilled

  • @LyrianFox
    @LyrianFox 9 лет назад +16

    Numberphile Thanks for this. I work in 3D Animation and have been wondering about the math behind Subdivision and limit surfaces for quite some time.
    On a side note, you asked Tony if everything comes out blobized, but in this vid, it doesnt seem like he answered the question the way you were expecting. The answer is no. In the 2d example, if we wanted one corner to be sharper than the others we add 1 or more vertices near the corner vert. The result is the averaging and splitting is tighter where we've added more vertex density resulting in a sharper smoothed corner

  • @Kinsata
    @Kinsata 9 лет назад +13

    13:45 He missed an opportunity to say "To Infinity and Beyond!"

  • @gnomee9447
    @gnomee9447 9 лет назад +20

    This is amazing! Two of my favourite subjects combined - maths and arts :)
    I'd love to have a job like his one day.

  • @AurelTristen
    @AurelTristen 9 лет назад +81

    Thank goodness 3D Studio Max does most of this math for me O___O

    • @AdeptusSteve
      @AdeptusSteve 9 лет назад +1

      urgh... 3ds max... nope.. not for me

    • @AurelTristen
      @AurelTristen 9 лет назад +4

      Stefan Ehrenhaus Really? It is a fantastic and powerful program. In my case, it is a perfect middle ground because I do some game asset stuff and some CGI VFX stuff. If I was doing all of one or the other, I'd be on a different program. There is also the fact that I've been using 3Ds for 15 years. What is your preference, and why is 3DS 'urgh' for you?

    • @AdeptusSteve
      @AdeptusSteve 9 лет назад +6

      Kyle Biggs Well, my preference is Maya, im a character TD for film.
      Complex deformation is just more accessible in maya than in 3ds, thanks to python and c++ api.
      But you sure have your point with 15 years experience, i respect that. Sorry if for any offense.

    • @AdeptusSteve
      @AdeptusSteve 9 лет назад

      Kyle Biggs Yeah do it, its fun and worth a try for sure.

    • @micoromico
      @micoromico 9 лет назад +1

      Alexander Tamayo I use MODO. Ditched 3DSmax for it because it gave me headaches while I was learning how to model. Never looked back since. I'm still crappy at what I do, but now I don't feel the pressure of fighting with the software instead of fighting the problem I need to address. :)

  • @Leonelf0
    @Leonelf0 9 лет назад +69

    so, negative numbers result in swastikas? :D

  • @AmiYamato
    @AmiYamato 9 лет назад +94

    I'm so jealous you visited Pixar!

    • @kimberlywebster8166
      @kimberlywebster8166 9 лет назад

      ***** pou tree wq

    • @SuperKawaiiChannel
      @SuperKawaiiChannel 8 лет назад

      +Ami Yamato who wouldn't be :P

    • @tracen638
      @tracen638 6 лет назад +1

      Ami Yamato didnt expect to see you here.

    • @vancemccarthy2554
      @vancemccarthy2554 4 года назад +1

      This is only comment I've seen so far, come from a channel I know about, pop up in the middle of nowhere of youtube.

  • @Ozitiho
    @Ozitiho 9 лет назад +66

    THERE IS A COMPUTERPHILE CHANNEL?!
    I WASN'T YET SUBBED TO IT?!

    • @OwenPrescott
      @OwenPrescott 9 лет назад +2

      There are a few other channels too!

    • @Ozitiho
      @Ozitiho 9 лет назад +5

      Owen Prescott As a software engineering student, I'm confident these two pander to me the most.

    • @OwenPrescott
      @OwenPrescott 9 лет назад +6

      Ozitiho Well programmers can also enjoy the space exploration, philosophy & physics. I'm only a designer and I'm subscribed to all of them. XD

    • @Tyranisaur
      @Tyranisaur 9 лет назад +12

      You're one of today's lucky 10k xkcd.com/1053/

    • @JamesV1
      @JamesV1 9 лет назад +3

      Ozitiho Bah, as a software engineering student, I enjoy learning about other things in my spare time!

  • @ZardoDhieldor
    @ZardoDhieldor 9 лет назад +5

    When I calculated some eigenvalues and eigenvectors in the first term of my math studies, I was bored. I _never_ imagined that the beauty of animated movies depended on it! :)
    Great overview, I'm really hoping for more! :)

  • @StuziCamis
    @StuziCamis 9 лет назад +17

    No one made a 'to infinity and beyond' joke? I am disappoint. I am very disappoint.

    • @nefarioustoast
      @nefarioustoast 9 лет назад +10

      wtf
      brady was the first

    • @RedTriangle53
      @RedTriangle53 9 лет назад +20

      Well, numberphile did. It's right above your comment.

  • @alberteinsteinthejew
    @alberteinsteinthejew 9 лет назад +4

    Wow I couldn't believe that 1,4,1 could make you laugh, sad, cry, and be entertained!

  • @TheMarkoSeke
    @TheMarkoSeke 9 лет назад +2

    Impressive video! You can tell that the man was very happy to share with the world how much math means to the animators.

  • @picosdrivethru
    @picosdrivethru 8 лет назад +3

    as a 3d modeler, this was really awesome to watch. Much thanks!

  • @monkeyman2497
    @monkeyman2497 9 лет назад +4

    Never should I hear the word "simple" in a Numberphile video.

  • @xanokothe
    @xanokothe 9 лет назад +7

    Perfectly explained, thanks!

  • @McTheWarhammer
    @McTheWarhammer 9 лет назад +40

    Ha! They digitized the hand, get it? Digitized? I'll leave now.

    • @Abdega
      @Abdega 6 лет назад

      TheHammer I gettit

  • @d4nielDayZContent
    @d4nielDayZContent 9 лет назад +9

    As Always: A video that answered questiones I never asked but always wanted to be answered!

  • @elwynbrooks
    @elwynbrooks 9 лет назад +1

    Wow!! Never realised there was so much maths in animation and art. Fantastic stuff!

  • @fluideight
    @fluideight 9 лет назад

    Awesome job! One of my favorite Numberphile episodes to date!

  • @Ben786
    @Ben786 9 лет назад +2

    This was SO COOL! We need some more of this "awesome applications of mathematics" stuff on this channel! :D

  • @rangedfighter
    @rangedfighter 9 лет назад

    Thanks brady for bringing so much cool science stuff in a lot of different fields, kudos to you

  • @shaoronmd
    @shaoronmd 9 лет назад +1

    this reminds me of my Graphics elective class back in college where our final project was to create a model (animation optional) in C++ (openGL)
    Anyway, i remember when our prof was introducing us to Bézier curve, which is what the "midpoint split" you see at the start. Our prof told us the exact same concept is used in carpentry to curve sharp corners

    • @CodeXCDM
      @CodeXCDM 9 лет назад +2

      Don't forget Car Design... in fact, the reason they're called Bezier curves wasn't because he made them, but he publicized/popularized use when designing for auto maker Renault. Another designer (from Citroen) started using them a few years earlier... and the basis for these curves was made by Bernstein in the late 1800s.

  • @MadManMarkAu
    @MadManMarkAu 9 лет назад

    Very nice! It's refreshing to see a numberphile video with direct, tangible relations to real-world problems, and have it still be utterly elegant.

  • @Somerandomdude-ev2uh
    @Somerandomdude-ev2uh 9 лет назад +74

    HACKED there are 33 likes and 0 dislikes 33+0 = 330 but there are only 301 views

  • @CtrlShiftGo
    @CtrlShiftGo 9 лет назад

    This is a fantastic video, I used to do computer graphics as a hobby and I always wondered how these processes worked.

  • @TakeWalker
    @TakeWalker 9 лет назад

    This was really fascinating. Thank you, Pixar!

  • @matheus.amazonas
    @matheus.amazonas 9 лет назад +1

    Amazing video, please keep making more of these.

  • @EcceJack
    @EcceJack 9 лет назад

    Very well explained, thank you!

  • @Psylent
    @Psylent 9 лет назад +3

    The shading is what I wanted to see. Shadows can be very mathematically complex. show us a video on it pls

  • @leonciesla5456
    @leonciesla5456 9 лет назад

    One of the coolest videos yet. Really awesome you got an Interview with pixar

  • @Mr.MattSim
    @Mr.MattSim 9 лет назад

    And now I love both math and cartoons even more.

  • @Visuwyg
    @Visuwyg 9 лет назад +1

    Woah. Today with all the readily available 3D Software it's kinda easy to forget that Pixar actually engineered all this Computer rendering stuff themselves.
    I can't say I understood what he explained, but still I can't wait for more.

  • @zumgugger
    @zumgugger 9 лет назад

    He's explaining in a very clear way. Thanks.

  • @Kram1032
    @Kram1032 9 лет назад

    So nice! Eigenvalues are almost magical in what they allow you to do.

  • @thefillingers
    @thefillingers 7 лет назад

    Beautifully done!

  • @djadmadu93
    @djadmadu93 9 лет назад +2

    ty daddy pixar ♥
    love your work ♡

  • @Pedritox0953
    @Pedritox0953 4 года назад

    I love this interview

  • @AJoe-ze6go
    @AJoe-ze6go 9 лет назад +2

    Very interesting.

  • @TheTrueRandomness
    @TheTrueRandomness 9 лет назад

    Wow, he's really really good at explaining this.

  • @DeathlyTired
    @DeathlyTired 9 лет назад +1

    That was glorious.

  • @4mathieuj
    @4mathieuj 9 лет назад

    Always nice to see a vid of yours!

  • @jainaadi
    @jainaadi 9 лет назад

    love the A113 double easter egg at the end!!

  • @RedKommunist
    @RedKommunist 9 лет назад

    Absolutely brilliant

  • @Cybeonix
    @Cybeonix 9 лет назад

    Truly interesting stuff. Love it.

  • @ProjSHiNKiROU
    @ProjSHiNKiROU 9 лет назад

    The averaging of points reminds me of affine combination (in my linear algebra textbook, but not taught in my course).

  • @ErikvanBlokland
    @ErikvanBlokland 9 лет назад

    Super, thanks for this!

  • @tracyroese4138
    @tracyroese4138 6 лет назад

    We watched this in my Geometry class. Students bet me that I could not give them any examples of using geometry in real life and this was PERFECT! Thanks for helping me win my bet! :-)

  • @jordanrozum
    @jordanrozum 3 года назад

    For those who know a little bit of linear algebra and are wondering about where the (A+4B+C)/6 thing comes from . . .
    Going from step 0 to step 1 can be thought of in terms of matrix multiplication like this:
    (A1) (4/8 4/8 0/8) (A0)
    (B1) = (1/8 6/8 1/8) (B0)
    (C1) (0/8 4/8 4/8) (C0)
    Or, if we call the matrix M and the vectors x0 and x1, we write x1=M * x0.
    The eigenvectors of M are (column) vectors v such that M * v is proportional to v. There are standard techniques for finding these eigenvectors and eigenvalues, which I won't go through here unless someone asks. The eigenvectors for this matrix are:
    v0 = (1,1,1), v1=(2,-1,2), and v2=(1,0,-1), (up to normalization, which we are free to choose however we like)
    and the eigenvalues (proportionality constants) are a0=1, a1=1/2, and a2=1/4. In other words, the following three equations hold
    M*v0 = (1)*v0
    M*v1=(1/2)*v1
    M*v2=(1/4)*v2
    Notice that we can write (A0,B0,C0) as
    A0*(v0 + v1 + 3*v2)/6 +
    B0*(2*v0 - v1 + 0*v2)/3 +
    C0*(v0 + v1 - 3*v2)/6
    So, what happens when we take M*(A0,B0,C0)? We can distribute M through the expression above and use our egeinvector equations (e.g., replace M*v2 with [1/4]*v2) to get
    M*(A0,B0,C0) =
    A0*([1]*v0 + [1/2]*v1 + [1/4]*3*v2)/6 +
    B0*([1]*2*v0 - [1/2]*v1 + [1/4]*0*v2)/3 +
    C0*([1]*v0 + [1/2]*v1 - [1/4]*3*v2)/6
    We can go again . . .
    (M^2)*(A0,B0,C0) =
    A0*([1^2]*v0 + [(1/2)^2]*v1 + [(1/4)^2]*3*v2)/6 +
    B0*([1^2]*2*v0 - [(1/2)^2]*v1 + [(1/4)^2]*0*v2)/3 +
    C0*([1^2]*v0 + [(1/2)^2]*v1 - [(1/4)^2]*3*v2)/6
    And in general . . .
    (M^n)*(A0,B0,C0) =
    A0*([1^n]*v0 + [(1/2)^n]*v1 + [(1/4)^n]*3*v2)/6 +
    B0*([1^n]*2*v0 - [(1/2)^n]*v1 + [(1/4)^n]*0*v2)/3 +
    C0*([1^n]*v0 + [(1/2)^n]*v1 - [(1/4)^n]*3*v2)/6
    As n gets large, the terms (1/2)^n and (1/4)^n go to zero and 1^n remains equal to 1, so we get
    limit of (M^n)*(A0,B0,C0) as n -> infinity=
    A0*(v0)/6 +
    B0*(2*v0)/3 +
    C0*(v0)/6
    = v0*(A0+4B0+C0)/6
    Or, back in vector form (recall v0=(1,1,1)):
    (A_infinity) ((A0+4B0+C0)/6)
    (B_infinity) = ((A0+4B0+C0)/6)
    (C_infinity) ((A0+4B0+C0)/6)
    So all three points converge to (A0+4B0+C0)/6.

  • @dbrhoads
    @dbrhoads 9 лет назад

    When should we expect the 2nd video in this series? Awesome stuff! Thanks!

  • @samre3006
    @samre3006 3 года назад

    This makes me so happy and curious. Exciting field.

  • @Smonjirez
    @Smonjirez 9 лет назад +2

    Yay it took me about 45 minutes to code a simple program that can do exactly the same (as the 2-D program he showed) ^^. I found the way it could create quite interesting fractal-like patterns very interesting :). I'll experiment a bit more with it, to see if I can create some interesting mathematical art with it.

  • @rush2489
    @rush2489 9 лет назад +2

    More computer graphics / geometric calculation math videos please.
    Especially anything done by Edwin Catmull or similar fields!!!

  • @ronaldlijs
    @ronaldlijs 9 лет назад

    Fantastic video, keep them up!!

  • @Uranstab
    @Uranstab 9 лет назад

    The music is fantastic

  • @Seth_M-T
    @Seth_M-T 9 лет назад

    Really exciting stuff, Brady! You must have loved it there...

  • @Soulsphere001
    @Soulsphere001 7 лет назад

    The first three minutes of this video is extremely informative. I've always wondered about how to convert a square to a circle, and it seems like this might be the way to do it.
    I also wonder if they explain this in "Pixar in a Box".

  • @davidlewis117
    @davidlewis117 8 лет назад

    Watched this like 3 times for some reason. Learned something useful about all rendering. Weird this is unknown by many who use this. tried to explain this to friends in AutoCAD/Image Design and ended up just showing this video.

  • @ashishmaurya945
    @ashishmaurya945 9 лет назад

    Thanks for videos numberphile

  • @CBMaster2
    @CBMaster2 9 лет назад +1

    Great video!

  • @dinkleberg3863
    @dinkleberg3863 8 лет назад +4

    going to hopefully be doing Computer Visualisation and Animation at Bournemouth Uni, the artistic side of computer animation is awesome but the Maths side is so damn interesting, really glad that were going to be looking at the Maths, not sure whether this'll be covered but hope so, seems really interesting:3

    • @Ocrack9889
      @Ocrack9889 8 лет назад

      I agree. Is that what you'll be learning with your major that math behind it or the artistic side?

    • @dinkleberg3863
      @dinkleberg3863 8 лет назад

      Omar Arias both, plus some computing:3

  • @molesticles
    @molesticles 9 лет назад +1

    cool.. it's like explaining art through maths.

  • @MikeDawson1
    @MikeDawson1 9 лет назад

    To answer your question about them all turning into blobs - they can set a "weight" to individual edges, to make them harder rather than softer - where you want more definition in the model instead of a smooth blob

  • @Un4GivNX
    @Un4GivNX 9 лет назад

    Whoah that was so interesting! :D Thank you!

  • @yanwo2359
    @yanwo2359 9 лет назад

    Very interesting and well presented.

  • @theperpetual8348
    @theperpetual8348 9 лет назад

    I'd love the ability to play around with this software, to see exactly how different weights turn out.

  • @cbbuntz
    @cbbuntz 9 лет назад

    Interesting observations:
    Each row of pascals triangle is generated by the convolution of the row above it by 1 1.
    Each progressive row becomes closer and closer to approximating a perfect gaussian curve [or e^(-x^2) ]

  • @TwasADream22
    @TwasADream22 9 лет назад

    That was superb!

  • @MofoWoW
    @MofoWoW 9 лет назад

    This is awesome!

  • @faielgila7375
    @faielgila7375 3 года назад +1

    No one seems to have called this out yet, but "Music by A113n Stewart" on the end card

  • @sophrapsune
    @sophrapsune 8 лет назад

    Great video, thanks.

  • @umcarainteressante
    @umcarainteressante 9 лет назад +1

    So amazing... I wanna work in this area :)

  • @ellaskultinas3817
    @ellaskultinas3817 6 лет назад

    Thank the lords I found this video. I had to pick a job that uses science and mathematics for an essay and I chose animating. I only found small things in other videos, but I got so many notes in this video. THANK THE LORDS.

  • @Pitusha
    @Pitusha 2 года назад

    This video is so mind blowing 🤯 I work in 3D now and I had no idea who those guys from "Catmull-Clark Algorithm" for subdivision came from!!! And for me, subdividing polygons is only a matter of clicking a button, I had no idea about that "moving points" part and the "weights" part, I just thought it was an average and that's all 😆

  • @pand1024
    @pand1024 9 лет назад

    One of your best videos! Maybe even better then when you ran over the calculator.

  • @morgengabe1
    @morgengabe1 7 лет назад

    Another special video, Haran!

  • @LordNjal
    @LordNjal 9 лет назад

    Awesome video !

  • @moremore23
    @moremore23 9 лет назад

    Very interesting, thanks

  • @noseman123
    @noseman123 9 лет назад

    This is fascinating stuff.

  • @taylorraywhitehead
    @taylorraywhitehead 9 лет назад

    So cool. Geometry is awesome.

  • @linabear55
    @linabear55 9 лет назад

    Just so cool!

  • @tritonmole
    @tritonmole 9 лет назад

    I`m amateur 3D animator and i didn`t realize before this video how interesting is Autodesk`s offered smoothing tool for 3ds max and maya.

  • @TopherT1
    @TopherT1 9 лет назад

    I never would have guessed all this was needed to make a movie.

  • @the_mentaculus
    @the_mentaculus 9 лет назад +1

    I want to see him explain the derivation of the (A+4B+C)/6 expression!!

  • @flaviorodriguez
    @flaviorodriguez 9 лет назад

    So nice!!!

  • @user-nf3hh8kn5r
    @user-nf3hh8kn5r 8 лет назад

    This is really interesting :)

  • @hglundahl
    @hglundahl 9 лет назад

    A great illustration of the principle that mathematical infinity doesn't mathematically exist.
    "B at infinity" = "(1 A at infinity + 4 B at infinity + 1 C at infinity) : 6"
    = (1 A at zero + 4 B at zero + 1 C at zero) : 6 (accessible without an infinity of steps)

  • @Kreamax
    @Kreamax 9 лет назад

    Very, very interesting!

  • @aaronclark2599
    @aaronclark2599 2 года назад

    Somehow this reminded me of your "floating body" video but without the floating.

  • @xThatsIt
    @xThatsIt 9 лет назад

    I wanna see the eigenanalysis! Hope it comes soon as well.
    That's subject we're doing in college right now.

  • @dimosthenisvallis3555
    @dimosthenisvallis3555 9 лет назад

    awesome vid

  • @cvebeats
    @cvebeats 9 лет назад

    very nice

  • @DustinRodriguez1_0
    @DustinRodriguez1_0 9 лет назад

    I was really hoping he was going to discuss the mathematics behind radiosity!

  • @_Onlime
    @_Onlime 9 лет назад

    AWESOME ^^

  • @TheMarkoSeke
    @TheMarkoSeke 9 лет назад

    OMG Geri's Game was such a sad movie for me. Even though it had the upbeat music playing, and the man seemed like he was happy, it was just so sad for me to watch it.

  • @BattleNerdYatta
    @BattleNerdYatta 9 лет назад

    very interesting!

  • @satellite7391
    @satellite7391 8 лет назад +1

    "Where did you get 1, 4, 1 again?
    "From by back pocket."
    "Okay!, look here smart ass." Interviewer probably

  • @SidharthMakhija
    @SidharthMakhija 9 лет назад

    Really cool video....Tony DeRose also gave a TED talk on this subject...not as detailed though!