139 - The topology of deep neural networks, designing your model.

Поделиться
HTML-код
  • Опубликовано: 15 янв 2025

Комментарии • 12

  • @ahmedbalaazi7806
    @ahmedbalaazi7806 2 года назад +1

    Thank you so much for the huge effort you are doing..

  • @nagasudha6928
    @nagasudha6928 Год назад

    Thanks a lot Sreeni in making us understand the AIML with which we got huge confidence on starting of the research

  • @samarafroz9852
    @samarafroz9852 4 года назад +2

    Big fan of you

  • @samarafroz9852
    @samarafroz9852 4 года назад +1

    Awesome work sir 👍

  • @veenags2735
    @veenags2735 3 года назад +1

    Awesome work.can u pls demnstrate stacked generalusation ensemble model of cnn

  • @Mojtaba-Sirati-Amsheh
    @Mojtaba-Sirati-Amsheh 2 года назад

    Thanks

  • @haowenwei3256
    @haowenwei3256 4 года назад

    Hi sir, I have a question. Why the input data dimension is 32 * 32 * 3.. Where is that 3 comes from. Thank you very much :)

    • @medblgsec
      @medblgsec 3 года назад +1

      it's for the three channels RGB, because the dataset presents some colors and not only greyscale images !

    • @sumitlahiri209
      @sumitlahiri209 3 года назад +1

      3 comes from the fact that there are 3 channels (types/components) of data for each gridcell in 32x32 , i.e the RGB (colorful images that it) channels. On the contrary, MNIST Digit dataset has only 1 channel so, the dimensions are 28x28, 1 (they are black and white)

  • @Jango1989
    @Jango1989 Год назад

    A great video but I feel like you didn't actually explain how and why we design the topology of a model; you only showed how the model's performance improved as the topology grew deeper.