KFold Cross Validation using Scikit Learn | Best Model | KFold from sklearn.cross_validation

Поделиться
HTML-код
  • Опубликовано: 24 янв 2025

Комментарии • 7

  • @ranaamnan7661
    @ranaamnan7661 6 лет назад +2

    good sir
    keep it up...!

  • @liangyumin9405
    @liangyumin9405 6 лет назад +1

    def kfold_in_model_selection_modual():
    from sklearn.model_selection import KFold
    kf = KFold(n_splits=3, shuffle=False)
    print('*' * 50, 'cross_validation', '*' * 20)
    print('{}{:^51} {}'.format('Iterations', 'Training Set', 'Testing Set'))
    print('*' * 50, 'cross_validation', '*' * 20)
    for train_index, test_index in enumerate(kf.split(range(15))):
    print(train_index, test_index)

  • @_ekcup_chai
    @_ekcup_chai 4 года назад

    error: __init__() got multiple values for argument 'n_folds'

  • @liangyumin9405
    @liangyumin9405 6 лет назад +1

    cross_validation model is deprecated... now use model_selection in py 3.6.6

    • @technologyCult
      @technologyCult  6 лет назад +1

      I will come up with kfold from model_selection 😊 .. Thankyou

    • @ziemamadoucoulibaly2305
      @ziemamadoucoulibaly2305 6 лет назад

      @@technologyCult use model selection please ,my problem is fitting x_train and y_train with linear regression, have you solution about my problem??