Response to Complex Exponential

Поделиться
HTML-код
  • Опубликовано: 28 окт 2024

Комментарии • 29

  • @SedoKai
    @SedoKai 7 лет назад +46

    The value of these video MIT OCW series is beyond comprehension. You're given the opportunity to develop marketable skill sets based on formal education for nominally no cost, where other people are paying 6 or high 5 figures for it. And since it comes from MIT, you're essentially assured of it's quality. I have to offer my sincere thanks and appreciation to the professors who volunteered their time, and to MIT for supporting them and allowing them to do it.

  • @rylanschaeffer3248
    @rylanschaeffer3248 4 года назад +1

    What happened to the initial condition y(0) and the null solution i.e. y(0)e^{at}? This seems to contradict his textbook's Equation 19.

    • @ashutoshacharya8
      @ashutoshacharya8 Год назад

      Gil only solves for particular solution in his video

  • @armpit1648
    @armpit1648 4 года назад +1

    What's the reason he kept alpha instead of converting to atan2(w/-a).
    And MIT could do something to improve the complex response of the audio tracks of their videos. Bet they can afford that.

    • @elyepes19
      @elyepes19 Год назад

      Simply for convenience of brevity and don't have the final solution looking too cumbersome

  • @alimehrabifard1830
    @alimehrabifard1830 8 лет назад +3

    Perfect

  • @CatsBirds2010
    @CatsBirds2010 7 лет назад +2

    Thanks......

  • @wimthiels638
    @wimthiels638 8 лет назад +4

    what about the initial conditions ? is the implicit assumption made that they are transitory because a< 0, so we can leave them out of the final solution ?

    • @rakhimovv
      @rakhimovv Год назад

      Null solution still exists and it is the same for different q(t). The professor is just considering the particular solution for particular q(t).

  • @sainandan65
    @sainandan65 Год назад

    Why there is no constant in the assumed solution of form? like yc = Ye^iwt + C

    • @physicalgraffitti
      @physicalgraffitti 7 месяцев назад

      aint it that the constant is already there?

  • @lazywarrior
    @lazywarrior 5 лет назад

    Please reorder the videos in the playlist. The current order is not correct.

    • @mitocw
      @mitocw  5 лет назад +1

      The playlist matches the course on MIT OpenCourseWare. Maybe you are looking at a different playlist? The official playlist for this series is ruclips.net/p/PLUl4u3cNGP63oTpyxCMLKt_JmB0WtSZfG.

    • @fredpelogia
      @fredpelogia 4 года назад

      @@mitocw I believe that this complex exponential video is supposed to be after the Oscillating input video and before the "Solution to any input" video.

  • @Chrisgintz88
    @Chrisgintz88 7 лет назад

    Is r supposed to equal sqrt(a^2 - w^2)? I am assuming (iw)^2= i^2*w^2 =-w^2

    • @chnegsi
      @chnegsi 7 лет назад +2

      no, it's the Modulus Amplitude Of A Complex Number

    • @suharsh96
      @suharsh96 7 лет назад

      no, its just the length of the hypotenuse that is calculated by the basic Pythagorean theorem.

    • @weinihao3632
      @weinihao3632 4 года назад

      @@ak47tetris84 In that case the complex value 1 + i would have a radius r = sqrt(1 - 1) = 0 which is obviously wrong. The correct calculation is r = sqrt ((a)^2 + (w)^2) as shown in the video

    • @Dark-tk9xu
      @Dark-tk9xu Год назад

      Yes, it ought to be sqrt(a2-w2).

    • @sossupummi
      @sossupummi 5 месяцев назад

      no, increasing omega in that case would decrease the length r of a vector in polar coordinates, but as you can see from the picture there, increasing omega increases the length

  • @T4l0nITA
    @T4l0nITA 5 лет назад

    so the imaginary part would be i*sin(ωt-alpha) ?

    • @ing.erickosorio2887
      @ing.erickosorio2887 5 лет назад +1

      yes, it comes from Euler great formula, e^(ix)=cosx+isinx , just replace your x with the angle you have.

  • @hathuytu
    @hathuytu 3 года назад

    Do you believe there exist anti-imaginary number?

  • @XiaosChannel
    @XiaosChannel 8 лет назад +10

    ahh the sound quality...

  • @马晓晓-i2y
    @马晓晓-i2y Год назад

    I am the 555th who click the like button. I am so inspired by these responses and thank you very professor.

  • @biolinux2307
    @biolinux2307 2 года назад

    Like 👍😀

  • @robertw2930
    @robertw2930 7 лет назад

    way overmodulated