Me & my friend have spent 2 hours on these 2 questions. Area with parametric equations. Reddit Calc2

Поделиться
HTML-код
  • Опубликовано: 4 май 2024
  • We will find the area under the curve when given parametric equations. This question is from Reddit r/maths and will help you with your Calculus 2 class. / 69obx32zfj
    -----------------------------
    Support this channel and get my calculus notes on Patreon: 👉
    / blackpenredpen
    Get the coolest math shirts from my Amazon store 👉 amzn.to/3qBeuw6
    -----------------------------
    #calculus #bprpcalculus #apcalculus #tutorial #math

Комментарии • 25

  • @bprpcalculusbasics
    @bprpcalculusbasics  2 месяца назад +2

    The second question: ruclips.net/video/xbkqsDCigt4/видео.html

    • @cyrusyeung8096
      @cyrusyeung8096 2 месяца назад

      The video is private, and is not viewable.

  • @xinpingdonohoe3978
    @xinpingdonohoe3978 2 месяца назад +30

    y dx = y dx/dt dt.
    That's the good thing about Leibniz notation. Everything that you think should work, does work, and it helps to keep some stuff intuition based instead of just memorisation all the time.

    • @RadChromeDude
      @RadChromeDude Месяц назад +1

      yessssssss this makes parametric equation so easy!

  • @TheEricthefruitbat
    @TheEricthefruitbat Месяц назад +6

    I love the red herring by the test givers: the point A has nothing to do with the problem/solution.

  • @roland3et
    @roland3et Месяц назад +3

    Nice solution. Nevertheless, I found the other one (mentioned at the very beginning and unfortunately wiped away immediately) much more simple, and therefore easier to compute: No reason for changing dx to dt, nor any need for recalculate the limits of the integral!
    And, furthermore, Steve's argument, this first easy way wouldn't work in general, is canceled out by himself a minute or two later, using pretty much the same conversion to find the new limits of the integral in t.
    Despite of that little dispute, it's again a great video of pbrp, with brilliant explanations!
    Love all your channels, Steve 👍!
    🙂👻

  • @orangeflow9809
    @orangeflow9809 2 месяца назад +6

    I love this channel so much

  • @uyangapuujee4508
    @uyangapuujee4508 Месяц назад +1

    Almost 1 month left until my first a level maths exam. I’m still learning some new tricks from you 😭😇

  • @manyifung5411
    @manyifung5411 2 месяца назад +2

    May you do the integration of ln(x)W(x)?

  • @aleksandarcvetkovski1784
    @aleksandarcvetkovski1784 Месяц назад

    Best teacher ever ❤

  • @borismedved835
    @borismedved835 Месяц назад

    Should also be a first grade English lesson here. "My friend and I have spent..."

  • @TVETHigh
    @TVETHigh 2 месяца назад

    Thumbs 👍 up, best explanation my good Sir.

  • @btb2954
    @btb2954 Месяц назад

    inverse of (1-x/2)=inverse of (2^y-1) get the inverses, solve for y then integrate

  • @norfolknchance657
    @norfolknchance657 Месяц назад +1

    "My friend and I"

  • @Mecha_Math
    @Mecha_Math 2 месяца назад

    Very good 🎉🎉❤

  • @Chrisuan
    @Chrisuan 2 месяца назад +2

    Question: how do you get the bounds of integration in t, if the x-equation isn't solvable for t?

    • @carultch
      @carultch 2 месяца назад +4

      Here's my own example, following Paul's method.
      Given:
      x(t) = cos(t) - t
      y(t) = t*e^(-t)
      Interested in the area in the first quadrant of the parametric curve
      The limits of t are:
      t = 0 to 0.74 (no exact value exists for the root of cos(t) - t)
      Area under curve:
      integral y(t) * x'(t) dt
      Carry out derivative for x'(t):
      x'(t) = -sin(t) - 1
      Multiply with y-function to get integral:
      integral -(sin(t) + 1)*t*e^(-t) dt = 1/2*e^(-t)*[2*t + t*sin(t) + (t + 1)*cos(t) + 2] + C
      Evaluate at t = zero:
      1/2*e^(-0)*[2*0 + 0*sin(0) + (0 + 1)*cos(0) + 2] = 3/2
      Evaluate at t = 0.74:
      1/2*e^(-0.74)*[2*0.74 + 0.74*sin(0.74) + (0.74 + 1)*cos(0.74) + 2] = 1.25574
      Subtract to get our final answer for area:
      0.244

    • @Robin-Dabank696
      @Robin-Dabank696 Месяц назад

      ​@@carultchso short answer: use a calculator

    • @carultch
      @carultch Месяц назад

      @@Robin-Dabank696 True. It is solvable in theory with the methods before calculators existed, but no exact solution exists to that example. I realize my comment with a link disappeared, so "Paul" is a mystery. Paul is Paul Dawkins of the website Paul's Online Notes.

  • @javier_me2
    @javier_me2 2 месяца назад

    Second comment :D

  • @robertpearce8394
    @robertpearce8394 2 месяца назад +42

    "My friend and I"