Capacitors are used to split the phase You can also split with the help of Inductive coil. But where inductive coil Lag the power factor... So thats why Capacitors are used to lead/increase the power factor...
केपेसिटर का काम ही होता है की किसी फेस से करेन्ट लेके उसके अनुसार दुसरे फेश को करेन्ट प्रदान करना जैसे की सिंगल फेस मोटर मे तिन केबल होती है दो केबल मे फेश लाईट देना पड़ता
बिल्कुल सही समझा आपने! सिंगल फेज मोटर में केपेसिटर का मुख्य काम यही होता है कि वह सिंगल फेज इनपुट को एक ऐसा आर्टिफिशियल "तीसरा फेज" प्रदान करे, जिससे मोटर में घुमाव शुरू हो सके। इसका कारण यह है कि सिंगल फेज पर मोटर खुद-ब-खुद स्टार्ट नहीं हो सकती, इसलिए केपेसिटर की मदद से मोटर में स्टार्टिंग टॉर्क उत्पन्न किया जाता है। सिंगल फेज मोटर में केपेसिटर का काम कैसे करता है: फेज शिफ्टिंग: केपेसिटर का काम फेज शिफ्टिंग करना होता है। यह सिंगल फेज इनपुट से करंट लेकर उसे 90 डिग्री शिफ्ट करता है, जिससे एक दूसरा "फेज" जैसा करंट बनता है। यह शिफ्टेड करंट मोटर के स्टार्टिंग वाइंडिंग को प्रदान किया जाता है, जिससे मोटर घूमना शुरू करती है। तीन तारों का सेटअप: एक तार मुख्य वाइंडिंग (Main winding) के लिए होता है। दूसरा तार स्टार्टिंग वाइंडिंग (Starting winding) के लिए होता है, जो कि केपेसिटर के साथ जुड़ा होता है। तीसरा तार न्यूट्रल होता है। इस सेटअप में मुख्य वाइंडिंग और स्टार्टिंग वाइंडिंग में करंट आता है, जिससे मोटर का घूमना संभव हो पाता है। स्टार्ट और रन केपेसिटर: कुछ मोटरों में दो प्रकार के केपेसिटर होते हैं - स्टार्ट केपेसिटर और रन केपेसिटर। स्टार्ट केपेसिटर मोटर को स्टार्ट करने में मदद करता है, जबकि रन केपेसिटर मोटर को चालू अवस्था में चलाने में मदद करता है। संक्षेप में केपेसिटर सिंगल फेज इनपुट से दो अलग-अलग करंट उत्पन्न करता है जो 90 डिग्री के फेज शिफ्ट पर होते हैं। यह फेज अंतर मोटर को घूमने के लिए आवश्यक टॉर्क प्रदान करता है।
A capacitor is an electronic component that stores and releases electrical energy. It consists of two conductive plates separated by an insulating material called a dielectric. When voltage is applied across the plates, an electric field develops in the dielectric, allowing the capacitor to store electrical energy. Capacitors are used in various applications, such as smoothing out fluctuations in power supplies, filtering signals, and in timing circuits. Their ability to store and release energy makes them crucial in both analog and digital electronics.
That's a clear and concise explanation of capacitors! Capacitors indeed play a vital role in electronic circuits due to their ability to store and release energy. Here's a bit more detail on their functions: Energy Storage: Capacitors can store energy when connected to a power source and release it when needed, making them essential in circuits that require a temporary power boost, like in camera flashes or for maintaining power during brief interruptions. Filtering: In power supplies, capacitors smooth out voltage fluctuations by filtering out noise, ensuring a steady output voltage. They are also used in audio and radio frequency circuits to filter specific frequencies. Timing Circuits: Capacitors are key components in timing circuits, where they work with resistors to create delays or oscillations. This is common in clocks, timers, and pulse generators. Coupling and Decoupling: In signal processing, capacitors are used to couple AC signals between different stages of a circuit while blocking DC components. They are also used to decouple or bypass AC noise from power supplies, ensuring that sensitive parts of the circuit remain unaffected by fluctuations.
Three-phase generators typically produce three-phase power, but you can obtain single-phase output from them by using various methods. Here are a few common ways to achieve single-phase output from a three-phase generator: Using a Transformer: You can use a transformer to step down the three-phase voltage to a single-phase voltage. This involves connecting two of the three phases to the primary side of a transformer and taking the output from one of the secondary windings. Using Two Phases: You can connect the load across any two of the three phases. This will give you a single-phase supply, but the voltage will be higher than that of a standard single-phase connection (typically √3 times the phase voltage). Phase Converter: If you need to operate single-phase loads using a three-phase generator, you can use a phase converter. This device can convert three-phase power to single-phase power, allowing you to run single-phase equipment effectively. Using Capacitors: In some cases, you can use capacitors to create a synthetic phase, effectively converting three-phase power to single-phase. This method is more common in smaller applications or for specific types of motors. Static Phase Converter: This converter allows a three-phase motor to operate on single-phase power, providing sufficient starting torque for the motor. It's suitable for small loads but may not be efficient for all applications. When implementing any of these methods, it's essential to consider the load requirements, as well as the generator's capacity, to ensure safe and effective operation.
CNC machines ke turret motor me DPS (Direct Power Supply) power supply ka istemal ho sakta hai, lekin iske specifics depend karte hain machine ke design aur manufacturer pe. Turret motor ko accurately control karne ke liye stable aur precise power supply ki zarurat hoti hai, aur DPS power supply ek aisa option ho sakta hai.
हाँ, आप एक मोटर-जेनरेटर सेटअप का उपयोग करके सिंगल फेज पावर को थ्री फेज पावर में बदल सकते हैं। इसे मोटर-जेनरेटर यूनिट (MGU) या रोटरी फेज कनवर्टर भी कहा जाता है। यह तरीका एक विश्वसनीय और सामान्य रूप से उपयोग किया जाने वाला समाधान है, विशेषकर उन स्थानों पर जहां केवल सिंगल फेज पावर उपलब्ध होती है और थ्री फेज पावर की आवश्यकता होती है। मोटर-जेनरेटर सेटअप की कार्यप्रणाली: मोटर: सिंगल फेज एसी सप्लाई से चलने वाली एक इलेक्ट्रिक मोटर। जेनरेटर: एक थ्री फेज एसी जेनरेटर जो मोटर से मैकेनिकली कनेक्टेड होता है। प्रक्रिया: सिंगल फेज मोटर: सिंगल फेज पावर सप्लाई से मोटर को चलाया जाता है। जेनरेटर का संचालन: मोटर, जेनरेटर को घुमाती है, जिससे जेनरेटर तीन फेज एसी पावर उत्पन्न करता है। लाभ: विश्वसनीयता: यह सेटअप बहुत विश्वसनीय होता है और लंबे समय तक चल सकता है। लचीलेपन: विभिन्न प्रकार के थ्री फेज उपकरणों को सिंगल फेज पावर से संचालित किया जा सकता है। स्थिर वोल्टेज और फ्रीक्वेंसी: यह एक स्थिर थ्री फेज वोल्टेज और फ्रीक्वेंसी प्रदान करता है। नुकसान: प्रारंभिक लागत: सेटअप की प्रारंभिक लागत अधिक हो सकती है। ऊर्जा दक्षता: कुछ ऊर्जा का नुकसान होता है क्योंकि मोटर और जेनरेटर दोनों में ऊर्जा की खपत होती है। रखरखाव: मोटर और जेनरेटर की नियमित देखभाल और रखरखाव की आवश्यकता होती है। वैकल्पिक विकल्प: स्टेटिक फेज कनवर्टर: यह उपकरण इलेक्ट्रॉनिक घटकों का उपयोग करके सिंगल फेज पावर को थ्री फेज पावर में बदलते हैं। वैरिएबल फ्रीक्वेंसी ड्राइव (VFD): यह डिवाइस सिंगल फेज इनपुट पावर को थ्री फेज आउटपुट पावर में कन्वर्ट करता है और मोटर की स्पीड को भी कंट्रोल करता है।
Devices Required: Digital Multimeter: Voltage Measurement: Aap multimeter ki madad se single-phase voltage ko measure kar sakte hain (220V typical hota hai). Continuity Check: Relay ki continuity ko check karne ke liye bhi multimeter ka use hota hai. Phase Sequence Meter (Optional): Agar aapka single-phase preventer phase reversal protection bhi deta hai (i.e., isme 3-phase systems ka bhi use ho), toh aap Phase Sequence Meter ki madad se ensure kar sakte hain ki proper phase sequence hai ya nahi. Test Lamp/Indicator Light: Aap test lamp ka bhi use kar sakte hain, jisse aap easily dekh sakte hain ki preventer power ko cut-off kar raha hai ya nahi. Testing Steps: Voltage Check: Multimeter se single-phase supply voltage check karein. Preventer ko power supply mil rahi hai ya nahi, yeh ensure karein. Relay Function Test: Agar voltage under-range ya over-range hoti hai (jaise preventer ko designed parameters se bahar hoti hai), toh preventer automatically relay ko trip kar dega. Multimeter se relay terminals (output) pe voltage check karein jab voltage abnormal ho. Yeh confirm karega ki preventer correctly function kar raha hai. Operational Test: Aap preventer ko manually test kar sakte hain (agar device allow karta ho) to check if it is cutting the supply when there is an issue with the voltage or phase.
Ji, 40 HP ki motor ke liye aapko ek appropriate automatic transfer switch (ATS) chahiye hoga jo 65 Amp load ko handle kar sake. Yeh kuch steps aur considerations hain jo aapko ATS select karte waqt dhyan mein rakhni chahiye: ATS Selection: Current Rating: Aapko 65 Amp load handle karne ke liye ATS ki current rating minimum 65 Amp honi chahiye. General recommendation yeh hota hai ki thoda higher rating (safety margin ke liye) ka ATS select karein, jaise 70-80 Amp. Voltage Rating: Aapko ATS ki voltage rating apni motor ke voltage rating ke according select karni hogi (e.g., 230V single-phase ya 415V three-phase). Type of ATS: Manual Transfer Switch (MTS): Agar aap manual switching prefer karte hain. Automatic Transfer Switch (ATS): Agar aap automatic switching prefer karte hain. ATS aapke requirement ke according zyada convenient hota hai. Cost Estimation: ATS ka cost brand, specifications aur features ke upar depend karta hai. Estimated cost range aapko ek idea dene ke liye provide kiya ja raha hai: Basic Manual Transfer Switch (MTS): Cost: ₹10,000 - ₹20,000 (approx.) Automatic Transfer Switch (ATS): Basic Models: ₹20,000 - ₹50,000 (approx.) Advanced Models with More Features: ₹50,000 - ₹1,00,000 (approx.)
To combine 140V and 50-80V into a single phase output, you can: Use a Transformer: To adjust and match the voltage levels. Rectifier & Filter: Convert AC to DC and smooth the output. Series/Parallel Connection: Combine voltages if compatible, but be cautious of mismatched voltages. Voltage Regulator: Stabilize the output voltage. Ensure the voltages are compatible for safe operation.
Using a 132 kW Variable Frequency Drive (VFD) involves a number of considerations, especially in terms of its application, sizing, installation, and operational parameters. Here’s a detailed overview: Application: A 132 kW VFD is typically used in industrial settings to control large motors, such as those found in pumps, fans, conveyors, compressors, or other heavy machinery. The primary purpose of the VFD is to adjust the speed and torque of the motor to match the demands of the application, leading to energy savings and more precise control.
Mere man me kai bar ek sawal hota hai ki jab humare ghar me bujali ghar se bijali milti hai wowha se generate hota hai aur hum use karte hai 1..mano ki agar 50 ghar me bijali gai aur use kia 2..fir agar 10 ghar wale hi bijali use karenge aur 40 ghar wale bijali use nehi karnge 3..to ab bijali ghar wale whase jo bijali banake bhej te hai usko bijali banane ka cost to same rehega chahe 10 ghar wale use kare ya 50 ghar wale use kare 3.. bijali bana ne ka cost to same hi rehega ga na chahe use kare ya na kare answer kijiyega please
Aapka sawal bilkul sahi hai aur bahut hi achha hai. Chaliye, isse samajhne ki koshish karte hain. Jab bijli ghar se bijli generate ki jaati hai, to bijli banane ka cost do cheezon par depend karta hai: Fixed cost: Jaise bijli banane ki machines (generators), power plant ke employees, plant ka maintenance, etc. Yeh cost hamesha hota hai, chahe bijli kitni bhi bani ho. Variable cost: Yeh cost bijli banane ke liye lagti hai, jaise fuel cost (coal, gas, diesel), ya renewable energy sources (solar, wind). Bijli jitni zyada bani, fuel ya energy source ka use utna hi zyada hoga, to yeh cost badh jaayegi. Agar 50 ghar bijli ka istemal karte hain, to power plant ko jitni bijli ki zarurat hai, utni produce karni padti hai. Uske liye fuel ya energy sources ka use zyada hota hai, isliye variable cost badh jaati hai. Agar sirf 10 ghar bijli ka use karte hain aur baaki 40 ghar nahi karte, to bijli ki demand kam ho jaati hai. Isliye power plant ko kam bijli generate karni padti hai, aur is wajah se fuel ya energy source ka use bhi kam hoga, to variable cost kam ho jaayegi. Lekin fixed cost wahi rahegi, kyunki machines, employees, aur maintenance ka kharcha hamesha lagta rahega, chahe demand ho ya na ho. Toh conclusion yeh hai: Fixed cost hamesha same rahega, chahe 10 ghar bijli use karein ya 50 ghar. Variable cost kam ya zyada ho sakta hai, jo bijli ke use ke hisaab se badhta ya ghata hai. Isliye agar kam log bijli use kar rahe hain, to bijli banane ka total kharcha kam hoga kyunki variable cost kam ho jaayegi, lekin fixed cost wahi rahegi.
ट्रांसफार्मर में से तीन अलग-अलग वाइंडिंग निकालने से थ्री-फेज़ सर्किट बनेगा, लेकिन RGB (Red, Green, Blue) आउटपुट की बात इस संदर्भ में समझने की ज़रूरत है। चलिए इसे विस्तार से समझते हैं: ट्रांसफार्मर और थ्री-फेज़ सर्किट थ्री-फेज़ ट्रांसफार्मर: एक थ्री-फेज़ ट्रांसफार्मर में तीन अलग-अलग वाइंडिंग्स (या फेज़) होते हैं जो एक निश्चित फेज़ शिफ्ट पर आधारित होते हैं। जब इन तीन वाइंडिंग्स से आउटपुट प्राप्त होता है, तो यह एक संतुलित थ्री-फेज़ सर्किट देता है। फेज़ वाइंडिंग्स: यदि आप ट्रांसफार्मर के तीन अलग-अलग वाइंडिंग्स को अलग-अलग कर लेते हैं, तो आप एक थ्री-फेज़ आउटपुट प्राप्त कर सकते हैं। प्रत्येक वाइंडिंग एक अलग फेज़ प्रदान करती है। फेज़ का अंतर 120 डिग्री होता है। फ़्रीक्वेंसी और RGB आउटपुट फ़्रीक्वेंसी: ट्रांसफार्मर का आउटपुट फ़्रीक्वेंसी (जैसे 50 Hz या 60 Hz) ट्रांसफार्मर के डिज़ाइन और इनपुट पर निर्भर करती है। अगर आप ट्रांसफार्मर के तीन वाइंडिंग्स को अलग-अलग करते हैं, तो भी फ़्रीक्वेंसी वही रहती है, क्योंकि यह ट्रांसफार्मर की प्राथमिक (प्राइमरी) और द्वितीयक (सेकंडरी) वाइंडिंग्स से निर्धारित होती है। RGB (Red, Green, Blue) आउटपुट: RGB एक रंग मॉडल है जिसका उपयोग आमतौर पर डिस्प्ले स्क्रीन पर रंगों को बनाने के लिए किया जाता है। थ्री-फेज़ पावर सर्किट में RGB आउटपुट का कोई सीधा संबंध नहीं होता। RGB रंगों की बात डिस्प्ले तकनीक से संबंधित होती है, जबकि थ्री-फेज़ पावर सर्किट पावर ट्रांसफर और वितरण से संबंधित होता है। संक्षेप में: थ्री-फेज़ सर्किट: यदि आप ट्रांसफार्मर से तीन अलग-अलग वाइंडिंग्स निकालते हैं, तो आप थ्री-फेज़ सर्किट प्राप्त कर सकते हैं। यह एक सही और संतुलित थ्री-फेज़ सर्किट होगा। फ़्रीक्वेंसी: फ़्रीक्वेंसी वही रहेगी जो ट्रांसफार्मर के डिज़ाइन के अनुसार है। RGB: RGB आउटपुट का थ्री-फेज़ सर्किट से कोई संबंध नहीं है। RGB रंग मॉडल का उपयोग डिस्प्ले और लाइटिंग में किया जाता है, न कि पावर ट्रांसफार्मर में। उम्मीद है कि इससे आपके प्रश्न का उत्तर मिल गया होगा!
Variable Frequency Drives (VFDs) are typically used to control the speed and torque of three-phase AC motors by varying the frequency and voltage supplied to the motor. In the context of inverter model air conditioners (ACs) and refrigerators, VFDs play a crucial role in controlling the compressor motor, which is often connected via UVW terminals. VFD in Inverter Model AC or Fridge: Compressor Control: Inverter model air conditioners and refrigerators use a VFD to control the speed of the compressor motor. This allows the compressor to run at variable speeds, which is more energy-efficient compared to traditional systems that run at a fixed speed. UVW Terminals: The UVW terminals on the compressor are the three-phase connections for the motor windings. The VFD generates a three-phase output with adjustable frequency and voltage that is supplied to these terminals, allowing for precise control of the compressor motor's operation. How It Works: Power Conversion: The VFD first converts the incoming AC power (usually single-phase or three-phase) into DC using a rectifier. DC to Variable AC: This DC is then converted back to AC with variable frequency and voltage using an inverter circuit within the VFD. Motor Control: The variable AC power is sent to the compressor motor's UVW terminals, enabling the motor to operate at different speeds. The speed is controlled based on the cooling demand, leading to more efficient operation and less wear on the compressor.
Yes, you can convert single-phase input to three-phase output using a Variable Frequency Drive (VFD), and it's a common solution for driving three-phase motors from a single-phase supply.
Power factor improvement - System efficiency badhata hai aur electricity cost reduce karta hai. Voltage regulation - Stable voltage maintain karta hai, especially heavy inductive loads ke saath. Harmonic filtering - System ke harmonics ko filter karta hai aur equipment ki life badhata hai. Motor starting - Three-phase motors ka starting torque improve karta hai. Isliye, three-phase systems mein capacitor ka kaam bahut critical hota hai for smooth and efficient operation.
Motor ka neutral connection kaise aur kahaan se milega, ye motor ke type aur wiring scheme par depend karta hai. Yahan kuch common scenarios hain: Single-Phase Motor: Neutral Wire: Single-phase motors mein, neutral wire usually power supply se connected hota hai. Aapko motor ke terminal box ya junction box me neutral wire dhoondhna hoga, jo generally white ya blue color ka hota hai. Three-Phase Motor: Neutral Wire: Three-phase motors typically neutral ka use nahi karte, kyunki yeh balanced load ke saath operate karte hain. Lekin agar motor ek star connection me ho, toh neutral wire ka connection star point se hota hai. Where to Find: Motor Terminal Box: Motor ke terminal box me, usually motor ke wires (L1, L2, L3 aur Neutral) clearly labeled hote hain. Wiring Diagram: Motor ke wiring diagram ko refer karein, jo aapko neutral wire location aur connections ke details provide karega.
A rotary phase converter is typically used to convert single-phase power (like the standard 220V supply) into three-phase power. In single-phase systems, you have L1 (live) and N (neutral), which together provide 220V. But in a rotary phase converter system, two legs, typically referred to as L1 and L2, represent the two-phase output, but it's not the same as a true single-phase system (L1 and N). Here's how it works: In a single-phase system, you have L1 and Neutral (N), which together give you 220V. In a rotary phase converter, it generates a third phase (L3) in addition to the two input phases (L1 and L2), which allows it to supply three-phase power (L1, L2, L3). So, when you say L1 and L2 are available but not single-phase, it might mean the rotary converter is giving you a two-phase supply without neutral, which is part of a three-phase system. To get back to true single-phase 220V, you would need an L1 and Neutral (N) connection, which rotary converters usually don't supply directly because their purpose is to provide three-phase power. In short: Single-phase 220V: L1 and N (Live and Neutral). Rotary phase converter: Produces L1, L2, and L3 for three-phase power, but doesn't use Neutral (N) as in a typical single-phase system. If you need single-phase power, you'd need to connect L1 to Neutral (N), but this setup isn't typically what a rotary phase converter is designed for.
Capacitor frequency change and voltage control systems are related concepts in electrical engineering, especially in circuits where capacitors play a crucial role. However, they serve different functions and operate under different principles. Capacitor and Frequency Relationship Frequency Response: Capacitors in a circuit affect how the circuit responds to different frequencies. The impedance (resistance to AC) of a capacitor is inversely proportional to the frequency of the signal passing through it, given by the formula: ZC=12πfC ZC=2πfC1 where ZCZC is the impedance, ff is the frequency, and CC is the capacitance. At higher frequencies, the impedance of a capacitor decreases, allowing more current to pass through, and vice versa. Resonant Frequency: In LC (inductor-capacitor) circuits, capacitors contribute to determining the resonant frequency, where the circuit naturally oscillates. The resonant frequency f0f0 is given by: f0=12πLC f0=2πLC 1 where LL is the inductance and CC is the capacitance. Voltage Control with Capacitors Voltage Regulation: Capacitors can be used in voltage control systems to smooth out voltage fluctuations. For example, in power supplies, capacitors are used to filter out AC ripples, providing a more stable DC output. In AC circuits, capacitors can help control the voltage by providing reactive power, which can correct the power factor and improve voltage regulation. Phase Shift and Power Factor Correction: Capacitors can also be used to shift the phase of the voltage and current in AC circuits. This is particularly useful in power factor correction, where capacitors are added to improve the efficiency of power delivery in AC power systems. Are They Equal? Capacitor frequency change and voltage control systems are not equal but are interconnected. Capacitors influence the frequency response of circuits and can be used to control voltage in various applications. However, frequency change specifically refers to how capacitors affect the behavior of a circuit at different frequencies, while voltage control refers to how capacitors help maintain a stable voltage. If you are asking about a specific application or circuit where both these concepts come into play, please provide more details, and I can give a more targeted explanation.
We can split through an inductor but an inductor is heavy and lagging and lagging has some disadvantage but if we used a capacitor , it lead the voltage by 90degree this is the advantage and capacitor is not heavy.
Yes, capacitors and inductors have different properties and are used in various applications based on these properties. Here’s a brief overview of the advantages and disadvantages of using capacitors versus inductors: Inductors: Advantages: Energy Storage: Inductors store energy in the form of a magnetic field, which can be useful in applications like transformers and inductive power transfer. Filtering: Inductors can be used in filters to block high-frequency signals and allow low-frequency signals to pass (low-pass filters). Current Smoothing: Inductors smooth out fluctuations in current, which is beneficial in power supplies. Disadvantages: Size and Weight: Inductors can be bulky and heavy, especially for high-power applications. Magnetic Interference: Inductors can generate magnetic fields that may interfere with other nearby electronic components. Lagging Power Factor: Inductors cause a lagging power factor, which can be a disadvantage in AC power systems because it reduces the efficiency of power transmission. Capacitors: Advantages: Size and Weight: Capacitors are generally lighter and more compact compared to inductors. Leading Power Factor: Capacitors cause a leading power factor, which can help to correct a lagging power factor in AC power systems, improving the overall efficiency. Energy Storage: Capacitors store energy in the form of an electric field, which is useful in applications like power conditioning, signal coupling, and decoupling. Disadvantages: Voltage Lead: While the leading power factor can be an advantage, it can also be a disadvantage in certain applications where precise phase alignment is required. Limited Energy Storage: Capacitors typically store less energy than inductors of comparable size. Frequency Sensitivity: Capacitors can block DC signals while allowing AC signals to pass, which might not be desirable in all applications.
1. Direct Single-Phase Connection Agar aapke paas three-phase supply hai, to aap usme se ek single-phase (do wires) directly le sakte hain. Connection: Ek phase aur neutral le kar load ko connect karte hain. Example: Agar three-phase supply R (Red), Y (Yellow), aur B (Blue) hai, to aap R aur neutral (N) use kar sakte hain. Limitation: Aapko load balance karna padega, taki har phase par equal load aaye. **2. Phase Converter (Static or Rotary) Static Phase Converter: Is device ka use karke three-phase ko single-phase mein convert kiya ja sakta hai. Mostly motor applications ke liye use hota hai. Rotary Phase Converter: Ye ek motor aur generator system hota hai jo single-phase supply produce karta hai. Zyada reliable aur efficient hota hai. **3. Transformer-based Method Agar high voltage ko single-phase chahiye, to step-down transformer ka use karke ek single-phase system banaya ja sakta hai. Connection: Three-phase ka ek ya do phase use karke transformer input mein diya jata hai aur output single-phase mein liya jata hai. **4. VFD (Variable Frequency Drive) VFD ka use karke three-phase input ko single-phase output mein convert kiya ja sakta hai. Mostly motor speed control applications ke liye use hota hai. Ye voltage aur frequency control kar sakta hai.
Capacitor is used for phase converted energy in one form to another form with capacitive load. Please explain another reason. Thank you for this information pluspoint team.
Then why capacitors are not used in 3 phase motors to manage power factor ۔ basically they are used in single phase motors for phase shif to produce field lines in coil ۔ and capacitors also have a property to control power factor
2-phase power cannot be directly converted into 3-phase power, but there are methods to operate a 3-phase motor, like your 20 HP motor, using a 2-phase supply. Here are a few common methods: 1. Rotary Phase Converter: A rotary phase converter is a device that converts single-phase or 2-phase power to 3-phase power. It uses a motor-generator setup to generate the third phase. This is a common solution for running large motors like a 20 HP motor. 2. Static Phase Converter: A static phase converter can also be used, but it is less efficient and is typically used for smaller motors. It creates a third phase by using capacitors to provide a temporary boost during startup. However, it doesn’t provide true 3-phase power, and the motor will not run at full capacity. 3. Variable Frequency Drive (VFD): A VFD is a solid-state device that converts single-phase or 2-phase power into 3-phase power and also allows you to control the motor speed. For a 20 HP motor, you would need a VFD that can handle the power requirements. VFDs are efficient and offer the added benefit of speed control. 4. Phase Converting Transformer: Another option is to use a phase converting transformer, which is specially designed to convert 2-phase power into 3-phase power. This is less common but can be effective for specific setups.
You are wrong understand yes I know Vfd are working 800+ kw but it's 3 phase Vfd. He says single phase Vfd. Single phase Vfd only small motors running or small machines load motors running limit only not heavy motors run. I think you understand.
hello sir, i think your guidance can help me. i have a 3 phase off grid solar setup of 10 kva at my workshop. with invertor of 3 phase inpiut and output. Now the problem is that battery drain by evening when i run machines all day. I have a single phase electricity connection also here but not able to give input supply to invertor. what is the ideal convertor in my case because i consulted few people and they said VFD is not suitable for me as i want to give supply to invertor so that batteries can be charged where as VFD is used on pumps or machine moters directly.
To address your issue of battery drainage in the evening and the inability to use your single-phase connection to charge your batteries through your three-phase inverter, here's a solution that could work for your setup: Understanding the Setup: Three-Phase Off-Grid Solar System: Your system is designed to generate and supply three-phase power, which is suitable for running heavy machinery. Battery Drain: The batteries are getting drained by the evening because the solar power might not be sufficient to run your machines and charge the batteries simultaneously. Single-Phase Grid Connection: You have a single-phase grid connection available, but you need to convert it to be usable with your three-phase inverter for battery charging. Recommended Solution: Single-Phase to Three-Phase Converter: Purpose: This converter will take your single-phase input and convert it into three-phase output, which can then be supplied to your three-phase inverter. Types of Converters: Rotary Phase Converter: Suitable for heavy-duty applications where you need to convert single-phase power to three-phase power efficiently. Static Phase Converter: More affordable but typically less efficient and not ideal for long-term heavy usage. Digital Phase Converter: Modern solution that offers better efficiency, stability, and power quality compared to rotary and static converters. Inverter Compatibility: Before purchasing any converter, ensure that your inverter can accept a three-phase input generated by such a converter. Some inverters are sensitive to the quality of the input power, so it’s crucial to check the specifications or consult the inverter manufacturer. VFD (Variable Frequency Drive): Not Suitable for Your Case: As you correctly mentioned, a VFD is primarily used to control the speed of motors and is not intended for converting single-phase power to three-phase power for the purpose of feeding an inverter. Implementation Steps: Consult with an Electrician: Get a professional electrician to assess the power requirements of your inverter and help you select the appropriate single-phase to three-phase converter. They can ensure that the converter you choose is compatible with your inverter. Install the Converter: Have the converter installed between your single-phase grid connection and the inverter’s input. Ensure all connections are properly made and safety protocols are followed. Monitor Performance: After installation, monitor the system’s performance to ensure that the batteries are being charged effectively and that there are no issues with the inverter’s operation. Alternative Solution: If upgrading to a three-phase grid connection is feasible, this would eliminate the need for a converter altogether and provide a more stable and efficient power supply to your inverter for battery charging.
चारों तरीक़े के कन्वर्टर में फेस डिफरेंस एंगल की डिग्री पर कोई चर्चा नहीं की गई। हम अच्छी तरह जानते है कि RYB में 120 डिग्री के फेस का अंतर होता है। जाहिर है जब सिंगल फेस हो या डबल फेस हो फेस डिफरेंस 180 डिग्री होता है। जब सिंगल फेस के दोनों तार थ्री फेस के लिए सीधे जुड़े होंगे और 3रे तार से किस तरह 120 डिग्री का अंतर प्राप्त किया जा सकता है।
1. तीन-फेज सिस्टम में फेज डिफरेंस तीन-फेज सिस्टम में, प्रत्येक फेज (R, Y, B) का फेज डिफरेंस 120° होता है। इसका मतलब है कि जब एक फेज अपने चरम पर होता है, तो दूसरे दो फेज समय-समय पर 120° और 240° पर होते हैं। यह अंतर इसलिए होता है क्योंकि तीन-फेज सप्लाई के प्रत्येक फेज का साइन वेव एक निश्चित समय अंतराल के बाद शिफ्ट होता है। 2. सिंगल फेज और डबल फेज का फेज डिफरेंस सिंगल फेज सप्लाई में केवल दो तार (फेज और न्यूट्रल) होते हैं, और इसका कोई फेज डिफरेंस नहीं होता क्योंकि इसमें केवल एक साइन वेव होती है। डबल फेज सप्लाई (जैसा कि कभी-कभी दो अलग-अलग फेज को जोड़ने के लिए किया जाता है) का फेज डिफरेंस 180° होता है। ऐसा इसलिए है क्योंकि दोनों तारों के वोल्टेज एक दूसरे के बिल्कुल उलट (opposite polarity) होते हैं। 3. तीन-फेज से सिंगल-फेज कनेक्शन में फेज डिफरेंस का निर्धारण जब सिंगल फेज के दो तार तीन-फेज से सीधे जोड़े जाते हैं, तो सिंगल फेज को तीन-फेज के किसी भी दो फेज से जोड़ सकते हैं। उदाहरण के लिए: यदि आप R और Y को जोड़ते हैं, तो आपको 120° का अंतर मिलेगा। यदि आप Y और B को जोड़ते हैं, तो भी अंतर 120° होगा। परंतु अगर आप R और B को जोड़ते हैं, तो आपको 240° का अंतर मिलेगा, जो कि (360° - 120°) है। 4. 120° फेज डिफरेंस प्राप्त करने के लिए तीसरे तार का उपयोग कैसे करें? तीन-फेज में किसी भी फेज के बीच वोल्टेज हमेशा अलग होता है। जब आप तीन तारों (R, Y, B) को एक साथ कनेक्ट करते हैं और फेज डिफरेंस को नियंत्रित करना चाहते हैं, तो आप एक फेज-शिफ्टिंग डिवाइस या ट्रांसफॉर्मर का उपयोग कर सकते हैं। यह सुनिश्चित करेगा कि आप तीसरे तार से वांछित 120° का अंतर प्राप्त करें। निष्कर्ष तीन-फेज सिस्टम में फेज डिफरेंस को समझना और इसे सिंगल या डबल फेज में लागू करना एक जटिल प्रक्रिया हो सकती है। यदि आप 120° फेज डिफरेंस प्राप्त करना चाहते हैं, तो आपको सटीक कनेक्शन और ट्रांसफॉर्मर का सही उपयोग करना होगा। यदि आप इस विषय पर व्यावहारिक या सैद्धांतिक रूप से और अधिक जानकारी चाहते हैं, तो मैं इस पर एक आरेख या वीडियो गाइड भी बना सकता हूँ।
अगर आपको इन्वर्टर की थ्री फेज मेन्स सेंसिंग चेक करनी है, तो इन तरीकों में से सही और सुरक्षित तरीका चुनें: 1. Multimeter Method (Safest) हर फेज और न्यूट्रल के बीच AC वोल्टेज चेक करें। तीनों फेज का वोल्टेज बराबर (लगभग 220-240V) होना चाहिए। 2. Phase Sequence Meter फेज सीक्वेंस मीटर का उपयोग करके फेज क्रम (R, Y, B) सही है या नहीं, यह जांचें। 3. LED Tester Method (Basic Check) तीनों फेज पर LED इंडिकेटर लगाकर पता करें कि वोल्टेज मौजूद है या नहीं।
Ac dcenergy ower tables loredv whatis energy s in the simplest terms energy isthe ability to perform work it may exist in several froms such as heat energy ., maechanical energy ehemicsl energy or electricsl chemical energy in a storge battery become electrical energy flowing through a circuit that lights a lamp .light energy and heat energy .or from to anther .dnergy can not be creeated or de stroyed . So the same relation shipes of energy transformation slways apply
Using a transformer alone to convert single-phase power to three-phase power is not feasible due to the fundamental differences in the nature of single-phase and three-phase electrical power. Here are the key reasons why a transformer alone cannot achieve this conversion: Nature of Single-Phase and Three-Phase Power: Single-Phase Power: Consists of a single alternating voltage wave, with current flowing in one phase wire and returning through a neutral wire. Three-Phase Power: Consists of three alternating voltage waves, each 120 degrees out of phase with the others, providing a more balanced and continuous power supply. Phase Relationship: A transformer cannot create the necessary 120-degree phase shift between the three phases needed for three-phase power from a single-phase input. Transformers only change voltage levels; they do not create additional phases or alter the phase relationship between input and output. Balanced Load Distribution: Three-phase power systems distribute the electrical load more evenly across the phases, reducing the load on any single phase and improving efficiency. Single-phase power cannot provide this balanced distribution.
लो! जी हां, अगर आपके पास T/F (ट्रांसफार्मर) से केवल दो वायर आ रहे हैं - एक फेज (Phase) और एक न्यूट्रल (Neutral) - तो इसे सिंगल फेज सप्लाई कहते हैं। सिंगल फेज सिस्टम में सिर्फ एक ही फेज होता है और इसे घरेलू उपकरणों में इस्तेमाल किया जाता है। सिंगल फेज को 3-फेज में कन्वर्ट करने के लिए आमतौर पर एक फेज कन्वर्टर का उपयोग किया जाता है। फेज कन्वर्टर अलग-अलग प्रकार के होते हैं, जैसे कि: रोटरी फेज कन्वर्टर - यह एक मोटर की तरह काम करता है और एक सिंगल फेज इनपुट से तीन फेज आउटपुट देता है। स्टैटिक फेज कन्वर्टर - यह थोड़ी देर के लिए मोटर को चालू करने के लिए आवश्यक तीसरे फेज को उत्पन्न करता है, लेकिन यह हर समय तीन फेज आउटपुट नहीं देता। वीएफडी (Variable Frequency Drive) - यह एक इलेक्ट्रॉनिक कन्वर्टर है जो इनपुट को बदलकर तीन फेज आउटपुट प्रदान करता है और गति भी नियंत्रित कर सकता है। आपको किस प्रकार का फेज कन्वर्टर चाहिए, यह आपके उपयोग और आवश्यकताओं पर निर्भर करेगा।
Capacitors are used to split the phase
You can also split with the help of Inductive coil.
But where inductive coil Lag the power factor...
So thats why Capacitors are used to lead/increase the power factor...
Good .. do share this video with others
केपेसिटर का काम ही होता है की किसी फेस से करेन्ट लेके उसके अनुसार दुसरे फेश को करेन्ट प्रदान करना जैसे की सिंगल फेस मोटर मे तिन केबल होती है दो केबल मे फेश लाईट देना पड़ता
बिल्कुल सही समझा आपने! सिंगल फेज मोटर में केपेसिटर का मुख्य काम यही होता है कि वह सिंगल फेज इनपुट को एक ऐसा आर्टिफिशियल "तीसरा फेज" प्रदान करे, जिससे मोटर में घुमाव शुरू हो सके। इसका कारण यह है कि सिंगल फेज पर मोटर खुद-ब-खुद स्टार्ट नहीं हो सकती, इसलिए केपेसिटर की मदद से मोटर में स्टार्टिंग टॉर्क उत्पन्न किया जाता है।
सिंगल फेज मोटर में केपेसिटर का काम कैसे करता है:
फेज शिफ्टिंग: केपेसिटर का काम फेज शिफ्टिंग करना होता है। यह सिंगल फेज इनपुट से करंट लेकर उसे 90 डिग्री शिफ्ट करता है, जिससे एक दूसरा "फेज" जैसा करंट बनता है। यह शिफ्टेड करंट मोटर के स्टार्टिंग वाइंडिंग को प्रदान किया जाता है, जिससे मोटर घूमना शुरू करती है।
तीन तारों का सेटअप:
एक तार मुख्य वाइंडिंग (Main winding) के लिए होता है।
दूसरा तार स्टार्टिंग वाइंडिंग (Starting winding) के लिए होता है, जो कि केपेसिटर के साथ जुड़ा होता है।
तीसरा तार न्यूट्रल होता है।
इस सेटअप में मुख्य वाइंडिंग और स्टार्टिंग वाइंडिंग में करंट आता है, जिससे मोटर का घूमना संभव हो पाता है।
स्टार्ट और रन केपेसिटर: कुछ मोटरों में दो प्रकार के केपेसिटर होते हैं - स्टार्ट केपेसिटर और रन केपेसिटर। स्टार्ट केपेसिटर मोटर को स्टार्ट करने में मदद करता है, जबकि रन केपेसिटर मोटर को चालू अवस्था में चलाने में मदद करता है।
संक्षेप में
केपेसिटर सिंगल फेज इनपुट से दो अलग-अलग करंट उत्पन्न करता है जो 90 डिग्री के फेज शिफ्ट पर होते हैं। यह फेज अंतर मोटर को घूमने के लिए आवश्यक टॉर्क प्रदान करता है।
A capacitor is an electronic component that stores and releases electrical energy. It consists of two conductive plates separated by an insulating material called a dielectric. When voltage is applied across the plates, an electric field develops in the dielectric, allowing the capacitor to store electrical energy.
Capacitors are used in various applications, such as smoothing out fluctuations in power supplies, filtering signals, and in timing circuits. Their ability to store and release energy makes them crucial in both analog and digital electronics.
That's a clear and concise explanation of capacitors! Capacitors indeed play a vital role in electronic circuits due to their ability to store and release energy. Here's a bit more detail on their functions:
Energy Storage: Capacitors can store energy when connected to a power source and release it when needed, making them essential in circuits that require a temporary power boost, like in camera flashes or for maintaining power during brief interruptions.
Filtering: In power supplies, capacitors smooth out voltage fluctuations by filtering out noise, ensuring a steady output voltage. They are also used in audio and radio frequency circuits to filter specific frequencies.
Timing Circuits: Capacitors are key components in timing circuits, where they work with resistors to create delays or oscillations. This is common in clocks, timers, and pulse generators.
Coupling and Decoupling: In signal processing, capacitors are used to couple AC signals between different stages of a circuit while blocking DC components. They are also used to decouple or bypass AC noise from power supplies, ensuring that sensitive parts of the circuit remain unaffected by fluctuations.
Power consumption power consumption kis me more use hai
Signal phase me or three phase me
in both are same
Very Easy... 🤷♂️
Yaha Capciator ka use Phase shifting k liye use kiya jata h
Still many work is done
Capacitor use frequency develop karne ke liye kiya hai na..jo 3phase me 120degrre phase angle hona padata hai...
will try to make video on this
Sir 3 phase generator me kiya laga ke single phase output le sakte hai
Three-phase generators typically produce three-phase power, but you can obtain single-phase output from them by using various methods. Here are a few common ways to achieve single-phase output from a three-phase generator:
Using a Transformer:
You can use a transformer to step down the three-phase voltage to a single-phase voltage. This involves connecting two of the three phases to the primary side of a transformer and taking the output from one of the secondary windings.
Using Two Phases:
You can connect the load across any two of the three phases. This will give you a single-phase supply, but the voltage will be higher than that of a standard single-phase connection (typically √3 times the phase voltage).
Phase Converter:
If you need to operate single-phase loads using a three-phase generator, you can use a phase converter. This device can convert three-phase power to single-phase power, allowing you to run single-phase equipment effectively.
Using Capacitors:
In some cases, you can use capacitors to create a synthetic phase, effectively converting three-phase power to single-phase. This method is more common in smaller applications or for specific types of motors.
Static Phase Converter:
This converter allows a three-phase motor to operate on single-phase power, providing sufficient starting torque for the motor. It's suitable for small loads but may not be efficient for all applications.
When implementing any of these methods, it's essential to consider the load requirements, as well as the generator's capacity, to ensure safe and effective operation.
For sufficient voltage and different wave form 120 degree of phase.
Thanku pluspoint training🙏
Welcome.. do share this video with others also
05:05 CNC ke Turret motor me ye DPS power supply ke liye use hota hai
CNC machines ke turret motor me DPS (Direct Power Supply) power supply ka istemal ho sakta hai, lekin iske specifics depend karte hain machine ke design aur manufacturer pe. Turret motor ko accurately control karne ke liye stable aur precise power supply ki zarurat hoti hai, aur DPS power supply ek aisa option ho sakta hai.
Leading reactive power output krega isliye capacitor use Kiya hai aur power factor ko maintain v krega
yes you are right.. check my pin comment
sir capacitor phase shift karsakta hai.
Capacitor ka use phase shift karne ke liye hota hoga yedi ans wrong ho to is par video banayiye sir please
1horse power hp =33.000 foot.pounfs ft-ibpermin=550fb per sec =746 watts =2545 british thermsl units btu per hour (h
1horse power hp =33.000 foot.pounfs ft-ibpermin=550fb per sec =746 watts =2545 british thermsl units btu per hour (h
1horse power hp =33.000 foot.pounfs ft-ibpermin=550fb per sec =746 watts =2545 british thermsl units btu per hour (h
Hr.. one horse power -hour hp -hr =1hp for 1hr.
=746 watthours (whr)=2545btu1kilowattkw)=1.000watts =1.000watts==1.34hp. 1kilowatt-hour kwhr.=1kwfor 1hr...=1.000whr.=1.34hp-hr.=3415btu1british ther unit btu =778ft-lbok thix allpoint baicsl ok ac
❤❤❤ very nice
Thanks 😊.. do share this video with others
Motor-generator setup bhi use kr skte h single phase ko 3 phase m convert krne k lie
हाँ, आप एक मोटर-जेनरेटर सेटअप का उपयोग करके सिंगल फेज पावर को थ्री फेज पावर में बदल सकते हैं। इसे मोटर-जेनरेटर यूनिट (MGU) या रोटरी फेज कनवर्टर भी कहा जाता है। यह तरीका एक विश्वसनीय और सामान्य रूप से उपयोग किया जाने वाला समाधान है, विशेषकर उन स्थानों पर जहां केवल सिंगल फेज पावर उपलब्ध होती है और थ्री फेज पावर की आवश्यकता होती है।
मोटर-जेनरेटर सेटअप की कार्यप्रणाली:
मोटर: सिंगल फेज एसी सप्लाई से चलने वाली एक इलेक्ट्रिक मोटर।
जेनरेटर: एक थ्री फेज एसी जेनरेटर जो मोटर से मैकेनिकली कनेक्टेड होता है।
प्रक्रिया:
सिंगल फेज मोटर: सिंगल फेज पावर सप्लाई से मोटर को चलाया जाता है।
जेनरेटर का संचालन: मोटर, जेनरेटर को घुमाती है, जिससे जेनरेटर तीन फेज एसी पावर उत्पन्न करता है।
लाभ:
विश्वसनीयता: यह सेटअप बहुत विश्वसनीय होता है और लंबे समय तक चल सकता है।
लचीलेपन: विभिन्न प्रकार के थ्री फेज उपकरणों को सिंगल फेज पावर से संचालित किया जा सकता है।
स्थिर वोल्टेज और फ्रीक्वेंसी: यह एक स्थिर थ्री फेज वोल्टेज और फ्रीक्वेंसी प्रदान करता है।
नुकसान:
प्रारंभिक लागत: सेटअप की प्रारंभिक लागत अधिक हो सकती है।
ऊर्जा दक्षता: कुछ ऊर्जा का नुकसान होता है क्योंकि मोटर और जेनरेटर दोनों में ऊर्जा की खपत होती है।
रखरखाव: मोटर और जेनरेटर की नियमित देखभाल और रखरखाव की आवश्यकता होती है।
वैकल्पिक विकल्प:
स्टेटिक फेज कनवर्टर: यह उपकरण इलेक्ट्रॉनिक घटकों का उपयोग करके सिंगल फेज पावर को थ्री फेज पावर में बदलते हैं।
वैरिएबल फ्रीक्वेंसी ड्राइव (VFD): यह डिवाइस सिंगल फेज इनपुट पावर को थ्री फेज आउटपुट पावर में कन्वर्ट करता है और मोटर की स्पीड को भी कंट्रोल करता है।
@@NiketShahPlushindi language nahi ata hain ..hindi ko English mein lekheyega sir
ਬਹੁਤ ਸਿਆਣਿਆਂ ਨਾਮ ਤੇ ਸਹੀ ਲੈ
kya?
Single phase preventer ko test karna hai kon divice purchase karna hai
Devices Required:
Digital Multimeter:
Voltage Measurement: Aap multimeter ki madad se single-phase voltage ko measure kar sakte hain (220V typical hota hai).
Continuity Check: Relay ki continuity ko check karne ke liye bhi multimeter ka use hota hai.
Phase Sequence Meter (Optional):
Agar aapka single-phase preventer phase reversal protection bhi deta hai (i.e., isme 3-phase systems ka bhi use ho), toh aap Phase Sequence Meter ki madad se ensure kar sakte hain ki proper phase sequence hai ya nahi.
Test Lamp/Indicator Light:
Aap test lamp ka bhi use kar sakte hain, jisse aap easily dekh sakte hain ki preventer power ko cut-off kar raha hai ya nahi.
Testing Steps:
Voltage Check:
Multimeter se single-phase supply voltage check karein. Preventer ko power supply mil rahi hai ya nahi, yeh ensure karein.
Relay Function Test:
Agar voltage under-range ya over-range hoti hai (jaise preventer ko designed parameters se bahar hoti hai), toh preventer automatically relay ko trip kar dega.
Multimeter se relay terminals (output) pe voltage check karein jab voltage abnormal ho. Yeh confirm karega ki preventer correctly function kar raha hai.
Operational Test:
Aap preventer ko manually test kar sakte hain (agar device allow karta ho) to check if it is cutting the supply when there is an issue with the voltage or phase.
Thanks but in company vfd is used for all motor
Yes, you are right.. do share this video with others as well
Sir 40 hp ki motor h us ke liye kon sa best h or costing kya rhe ga 65 Amp ka load h
Ji, 40 HP ki motor ke liye aapko ek appropriate automatic transfer switch (ATS) chahiye hoga jo 65 Amp load ko handle kar sake. Yeh kuch steps aur considerations hain jo aapko ATS select karte waqt dhyan mein rakhni chahiye:
ATS Selection:
Current Rating:
Aapko 65 Amp load handle karne ke liye ATS ki current rating minimum 65 Amp honi chahiye.
General recommendation yeh hota hai ki thoda higher rating (safety margin ke liye) ka ATS select karein, jaise 70-80 Amp.
Voltage Rating:
Aapko ATS ki voltage rating apni motor ke voltage rating ke according select karni hogi (e.g., 230V single-phase ya 415V three-phase).
Type of ATS:
Manual Transfer Switch (MTS): Agar aap manual switching prefer karte hain.
Automatic Transfer Switch (ATS): Agar aap automatic switching prefer karte hain. ATS aapke requirement ke according zyada convenient hota hai.
Cost Estimation:
ATS ka cost brand, specifications aur features ke upar depend karta hai. Estimated cost range aapko ek idea dene ke liye provide kiya ja raha hai:
Basic Manual Transfer Switch (MTS):
Cost: ₹10,000 - ₹20,000 (approx.)
Automatic Transfer Switch (ATS):
Basic Models: ₹20,000 - ₹50,000 (approx.)
Advanced Models with More Features: ₹50,000 - ₹1,00,000 (approx.)
Thank uu sir @@NiketShahPlus
जी हमारे 3फेस लाइट में एक फेस में 70 v लाइट रहती हैं तो 7.5hp की ट्यू वेल की मोटर इससे चल जायेगी क्या लोड 6-7 amp का होता है
Nice explained
welcome.. do share this video with others
Related video banaiye
7:37 2 fuse to 3 fuse generate
Good job
Thanks.. do share this video with others and with your friends as well
Nicely explained .
thanks .. do share this video with others..
Sir, how's capacitor work for three phase please send video
check description below video
Sir, Iwant two ph se single ph cheia kaya mil sakata hai ,
you can generate
Sir farm me rat ko 1 phase me 140 volt ata hai and ek .e 50 se 80 volt is dono ko milakar ek phase me output keise le
To combine 140V and 50-80V into a single phase output, you can:
Use a Transformer: To adjust and match the voltage levels.
Rectifier & Filter: Convert AC to DC and smooth the output.
Series/Parallel Connection: Combine voltages if compatible, but be cautious of mismatched voltages.
Voltage Regulator: Stabilize the output voltage.
Ensure the voltages are compatible for safe operation.
Capacitor used in phase shift example for ceiling fan single phase motor but capacitor used in phase shift and run motor with two phase
correct.. check the comments section for more details.. do share this video with others
We use 132 kw vfd It’s working nice
Using a 132 kW Variable Frequency Drive (VFD) involves a number of considerations, especially in terms of its application, sizing, installation, and operational parameters. Here’s a detailed overview:
Application:
A 132 kW VFD is typically used in industrial settings to control large motors, such as those found in pumps, fans, conveyors, compressors, or other heavy machinery. The primary purpose of the VFD is to adjust the speed and torque of the motor to match the demands of the application, leading to energy savings and more precise control.
Capstar ka istmal votag ko jama kra k agy phas bnany ka Kam krta ha
ok.. aur bhi bahat kam he.. check karo comment section
Capacitor ka use Phase shift karne liye Kate hai
yes.. also other use as well
Mere man me kai bar ek sawal hota hai ki jab humare ghar me bujali ghar se bijali milti hai wowha se generate hota hai aur hum use karte hai
1..mano ki agar 50 ghar me bijali gai aur use kia
2..fir agar 10 ghar wale hi bijali use karenge aur 40 ghar wale bijali use nehi karnge
3..to ab bijali ghar wale whase jo bijali banake bhej te hai usko bijali banane ka cost to same rehega chahe 10 ghar wale use kare ya 50 ghar wale use kare
3.. bijali bana ne ka cost to same hi rehega ga na chahe use kare ya na kare answer kijiyega please
Aapka sawal bilkul sahi hai aur bahut hi achha hai. Chaliye, isse samajhne ki koshish karte hain.
Jab bijli ghar se bijli generate ki jaati hai, to bijli banane ka cost do cheezon par depend karta hai:
Fixed cost: Jaise bijli banane ki machines (generators), power plant ke employees, plant ka maintenance, etc. Yeh cost hamesha hota hai, chahe bijli kitni bhi bani ho.
Variable cost: Yeh cost bijli banane ke liye lagti hai, jaise fuel cost (coal, gas, diesel), ya renewable energy sources (solar, wind). Bijli jitni zyada bani, fuel ya energy source ka use utna hi zyada hoga, to yeh cost badh jaayegi.
Agar 50 ghar bijli ka istemal karte hain, to power plant ko jitni bijli ki zarurat hai, utni produce karni padti hai. Uske liye fuel ya energy sources ka use zyada hota hai, isliye variable cost badh jaati hai.
Agar sirf 10 ghar bijli ka use karte hain aur baaki 40 ghar nahi karte, to bijli ki demand kam ho jaati hai. Isliye power plant ko kam bijli generate karni padti hai, aur is wajah se fuel ya energy source ka use bhi kam hoga, to variable cost kam ho jaayegi. Lekin fixed cost wahi rahegi, kyunki machines, employees, aur maintenance ka kharcha hamesha lagta rahega, chahe demand ho ya na ho.
Toh conclusion yeh hai:
Fixed cost hamesha same rahega, chahe 10 ghar bijli use karein ya 50 ghar.
Variable cost kam ya zyada ho sakta hai, jo bijli ke use ke hisaab se badhta ya ghata hai.
Isliye agar kam log bijli use kar rahe hain, to bijli banane ka total kharcha kam hoga kyunki variable cost kam ho jaayegi, lekin fixed cost wahi rahegi.
Dear sir
Please make video & explain on inverter ac pcb.
We will try but do share this videos with others also
Static converter bata sakate hai kya
ok will try to make video on this topic as well in future
For house wiring what will be the best sir
Yes.. do share this video with others also
single phase for home use..3 phase according to your motor HP
ट्रांसफार्मर में से तीन अलग अलग वाइंडिंग अगर निकल जाए तो थ्री फेस बनेगा लेकिन स्टार्ट फ्रीक्वेंसी सेम रहेगी इस लिए RGB नहीं होगा या हो सकता है क्या ?
ट्रांसफार्मर में से तीन अलग-अलग वाइंडिंग निकालने से थ्री-फेज़ सर्किट बनेगा, लेकिन RGB (Red, Green, Blue) आउटपुट की बात इस संदर्भ में समझने की ज़रूरत है। चलिए इसे विस्तार से समझते हैं:
ट्रांसफार्मर और थ्री-फेज़ सर्किट
थ्री-फेज़ ट्रांसफार्मर:
एक थ्री-फेज़ ट्रांसफार्मर में तीन अलग-अलग वाइंडिंग्स (या फेज़) होते हैं जो एक निश्चित फेज़ शिफ्ट पर आधारित होते हैं। जब इन तीन वाइंडिंग्स से आउटपुट प्राप्त होता है, तो यह एक संतुलित थ्री-फेज़ सर्किट देता है।
फेज़ वाइंडिंग्स:
यदि आप ट्रांसफार्मर के तीन अलग-अलग वाइंडिंग्स को अलग-अलग कर लेते हैं, तो आप एक थ्री-फेज़ आउटपुट प्राप्त कर सकते हैं। प्रत्येक वाइंडिंग एक अलग फेज़ प्रदान करती है। फेज़ का अंतर 120 डिग्री होता है।
फ़्रीक्वेंसी और RGB आउटपुट
फ़्रीक्वेंसी:
ट्रांसफार्मर का आउटपुट फ़्रीक्वेंसी (जैसे 50 Hz या 60 Hz) ट्रांसफार्मर के डिज़ाइन और इनपुट पर निर्भर करती है। अगर आप ट्रांसफार्मर के तीन वाइंडिंग्स को अलग-अलग करते हैं, तो भी फ़्रीक्वेंसी वही रहती है, क्योंकि यह ट्रांसफार्मर की प्राथमिक (प्राइमरी) और द्वितीयक (सेकंडरी) वाइंडिंग्स से निर्धारित होती है।
RGB (Red, Green, Blue) आउटपुट:
RGB एक रंग मॉडल है जिसका उपयोग आमतौर पर डिस्प्ले स्क्रीन पर रंगों को बनाने के लिए किया जाता है। थ्री-फेज़ पावर सर्किट में RGB आउटपुट का कोई सीधा संबंध नहीं होता। RGB रंगों की बात डिस्प्ले तकनीक से संबंधित होती है, जबकि थ्री-फेज़ पावर सर्किट पावर ट्रांसफर और वितरण से संबंधित होता है।
संक्षेप में:
थ्री-फेज़ सर्किट: यदि आप ट्रांसफार्मर से तीन अलग-अलग वाइंडिंग्स निकालते हैं, तो आप थ्री-फेज़ सर्किट प्राप्त कर सकते हैं। यह एक सही और संतुलित थ्री-फेज़ सर्किट होगा।
फ़्रीक्वेंसी: फ़्रीक्वेंसी वही रहेगी जो ट्रांसफार्मर के डिज़ाइन के अनुसार है।
RGB: RGB आउटपुट का थ्री-फेज़ सर्किट से कोई संबंध नहीं है। RGB रंग मॉडल का उपयोग डिस्प्ले और लाइटिंग में किया जाता है, न कि पावर ट्रांसफार्मर में।
उम्मीद है कि इससे आपके प्रश्न का उत्तर मिल गया होगा!
for filterationn or leading pf
check the pin comment
sir 50 hp digital phase convert per 3 phase 16 kw three phase welding machine can run
You can use 3phase garnator instad
yes afcourse you can
Capacitor is current store used
Juni motor 😂 like it❤
Marathi .. 👍
Do share this video with others
All of best vfd I fixed allready 45kw vfd
Good .. do share this video with others also
Sir iska circuit diagram banakar explain karai aur capacitor ka use hi q hota hain explain karai
ok will try.. do share this video with others
Can it helps to run air conditioner ??
yes but need to check its capacity first
VFD use in inverter model ac or fridge in Compressor uvw connection
Variable Frequency Drives (VFDs) are typically used to control the speed and torque of three-phase AC motors by varying the frequency and voltage supplied to the motor. In the context of inverter model air conditioners (ACs) and refrigerators, VFDs play a crucial role in controlling the compressor motor, which is often connected via UVW terminals.
VFD in Inverter Model AC or Fridge:
Compressor Control: Inverter model air conditioners and refrigerators use a VFD to control the speed of the compressor motor. This allows the compressor to run at variable speeds, which is more energy-efficient compared to traditional systems that run at a fixed speed.
UVW Terminals: The UVW terminals on the compressor are the three-phase connections for the motor windings. The VFD generates a three-phase output with adjustable frequency and voltage that is supplied to these terminals, allowing for precise control of the compressor motor's operation.
How It Works:
Power Conversion: The VFD first converts the incoming AC power (usually single-phase or three-phase) into DC using a rectifier.
DC to Variable AC: This DC is then converted back to AC with variable frequency and voltage using an inverter circuit within the VFD.
Motor Control: The variable AC power is sent to the compressor motor's UVW terminals, enabling the motor to operate at different speeds. The speed is controlled based on the cooling demand, leading to more efficient operation and less wear on the compressor.
Thank you sir
Very useful video
So nice of you do share this video with others also
Vfd से 75 hp moter chal reha he cost jyda he par moter ke liye best he
ok.. do share this video with others
Capacitor split the phase by leading the voltage in phase
correct. many more thind it can do check karo comments
Sir i am automation engineer for vfds and plc s.. freq. Control hojai gi? Single to three me like vfds up to 3 hp
Yes, you can convert single-phase input to three-phase output using a Variable Frequency Drive (VFD), and it's a common solution for driving three-phase motors from a single-phase supply.
Capacitor se power factor control Kiya jata hai.....
many more things it can do check the comments
Sir capacitor ac byaas kar tha hai
do many work will try to make video on this topic
Maximum kitane hp ka moter chala sakate hai sir
depends upon the product you have purchasesd
Three phase m capistor ka kya kaam hai
Power factor improvement - System efficiency badhata hai aur electricity cost reduce karta hai.
Voltage regulation - Stable voltage maintain karta hai, especially heavy inductive loads ke saath.
Harmonic filtering - System ke harmonics ko filter karta hai aur equipment ki life badhata hai.
Motor starting - Three-phase motors ka starting torque improve karta hai.
Isliye, three-phase systems mein capacitor ka kaam bahut critical hota hai for smooth and efficient operation.
Sir motor ko nutarl kha se melega
Motor ka neutral connection kaise aur kahaan se milega, ye motor ke type aur wiring scheme par depend karta hai. Yahan kuch common scenarios hain:
Single-Phase Motor:
Neutral Wire: Single-phase motors mein, neutral wire usually power supply se connected hota hai. Aapko motor ke terminal box ya junction box me neutral wire dhoondhna hoga, jo generally white ya blue color ka hota hai.
Three-Phase Motor:
Neutral Wire: Three-phase motors typically neutral ka use nahi karte, kyunki yeh balanced load ke saath operate karte hain. Lekin agar motor ek star connection me ho, toh neutral wire ka connection star point se hota hai.
Where to Find:
Motor Terminal Box: Motor ke terminal box me, usually motor ke wires (L1, L2, L3 aur Neutral) clearly labeled hote hain.
Wiring Diagram: Motor ke wiring diagram ko refer karein, jo aapko neutral wire location aur connections ke details provide karega.
Rotary phase converter me L1 L2 yaani two phases are available not single phase. Single phase mean L1 and N. 220V
A rotary phase converter is typically used to convert single-phase power (like the standard 220V supply) into three-phase power. In single-phase systems, you have L1 (live) and N (neutral), which together provide 220V. But in a rotary phase converter system, two legs, typically referred to as L1 and L2, represent the two-phase output, but it's not the same as a true single-phase system (L1 and N).
Here's how it works:
In a single-phase system, you have L1 and Neutral (N), which together give you 220V.
In a rotary phase converter, it generates a third phase (L3) in addition to the two input phases (L1 and L2), which allows it to supply three-phase power (L1, L2, L3).
So, when you say L1 and L2 are available but not single-phase, it might mean the rotary converter is giving you a two-phase supply without neutral, which is part of a three-phase system. To get back to true single-phase 220V, you would need an L1 and Neutral (N) connection, which rotary converters usually don't supply directly because their purpose is to provide three-phase power.
In short:
Single-phase 220V: L1 and N (Live and Neutral).
Rotary phase converter: Produces L1, L2, and L3 for three-phase power, but doesn't use Neutral (N) as in a typical single-phase system.
If you need single-phase power, you'd need to connect L1 to Neutral (N), but this setup isn't typically what a rotary phase converter is designed for.
Ok
But Nutral kese use kare
common hoto he
Electrician course online karna hain, fees kitna hoga
whatsapp me on .. 9768871110..
auto waiting shikni hai sir ofline
nahi he filal is ka course
Capacitor frequency change and voltage control system equal
Capacitor frequency change and voltage control systems are related concepts in electrical engineering, especially in circuits where capacitors play a crucial role. However, they serve different functions and operate under different principles.
Capacitor and Frequency Relationship
Frequency Response:
Capacitors in a circuit affect how the circuit responds to different frequencies. The impedance (resistance to AC) of a capacitor is inversely proportional to the frequency of the signal passing through it, given by the formula:
ZC=12πfC
ZC=2πfC1
where ZCZC is the impedance, ff is the frequency, and CC is the capacitance.
At higher frequencies, the impedance of a capacitor decreases, allowing more current to pass through, and vice versa.
Resonant Frequency:
In LC (inductor-capacitor) circuits, capacitors contribute to determining the resonant frequency, where the circuit naturally oscillates. The resonant frequency f0f0 is given by:
f0=12πLC
f0=2πLC
1
where LL is the inductance and CC is the capacitance.
Voltage Control with Capacitors
Voltage Regulation:
Capacitors can be used in voltage control systems to smooth out voltage fluctuations. For example, in power supplies, capacitors are used to filter out AC ripples, providing a more stable DC output.
In AC circuits, capacitors can help control the voltage by providing reactive power, which can correct the power factor and improve voltage regulation.
Phase Shift and Power Factor Correction:
Capacitors can also be used to shift the phase of the voltage and current in AC circuits. This is particularly useful in power factor correction, where capacitors are added to improve the efficiency of power delivery in AC power systems.
Are They Equal?
Capacitor frequency change and voltage control systems are not equal but are interconnected. Capacitors influence the frequency response of circuits and can be used to control voltage in various applications. However, frequency change specifically refers to how capacitors affect the behavior of a circuit at different frequencies, while voltage control refers to how capacitors help maintain a stable voltage.
If you are asking about a specific application or circuit where both these concepts come into play, please provide more details, and I can give a more targeted explanation.
Q ki current ko store karne ka kam karta hai
Yes correct aur bhi bahat kam check check karo pin comment
We can split through an inductor but an inductor is heavy and lagging and lagging has some disadvantage but if we used a capacitor , it lead the voltage by 90degree this is the advantage and capacitor is not heavy.
Yes, capacitors and inductors have different properties and are used in various applications based on these properties. Here’s a brief overview of the advantages and disadvantages of using capacitors versus inductors:
Inductors:
Advantages:
Energy Storage: Inductors store energy in the form of a magnetic field, which can be useful in applications like transformers and inductive power transfer.
Filtering: Inductors can be used in filters to block high-frequency signals and allow low-frequency signals to pass (low-pass filters).
Current Smoothing: Inductors smooth out fluctuations in current, which is beneficial in power supplies.
Disadvantages:
Size and Weight: Inductors can be bulky and heavy, especially for high-power applications.
Magnetic Interference: Inductors can generate magnetic fields that may interfere with other nearby electronic components.
Lagging Power Factor: Inductors cause a lagging power factor, which can be a disadvantage in AC power systems because it reduces the efficiency of power transmission.
Capacitors:
Advantages:
Size and Weight: Capacitors are generally lighter and more compact compared to inductors.
Leading Power Factor: Capacitors cause a leading power factor, which can help to correct a lagging power factor in AC power systems, improving the overall efficiency.
Energy Storage: Capacitors store energy in the form of an electric field, which is useful in applications like power conditioning, signal coupling, and decoupling.
Disadvantages:
Voltage Lead: While the leading power factor can be an advantage, it can also be a disadvantage in certain applications where precise phase alignment is required.
Limited Energy Storage: Capacitors typically store less energy than inductors of comparable size.
Frequency Sensitivity: Capacitors can block DC signals while allowing AC signals to pass, which might not be desirable in all applications.
Capacitor ka upyog fage angal genrat karne ke liye
yes.. one of the use.. do share this video with others
Three phase to single phase kar sakte hai?
Agar kar sakte hai to kaise?
1. Direct Single-Phase Connection
Agar aapke paas three-phase supply hai, to aap usme se ek single-phase (do wires) directly le sakte hain.
Connection: Ek phase aur neutral le kar load ko connect karte hain.
Example: Agar three-phase supply R (Red), Y (Yellow), aur B (Blue) hai, to aap R aur neutral (N) use kar sakte hain.
Limitation: Aapko load balance karna padega, taki har phase par equal load aaye.
**2. Phase Converter (Static or Rotary)
Static Phase Converter:
Is device ka use karke three-phase ko single-phase mein convert kiya ja sakta hai.
Mostly motor applications ke liye use hota hai.
Rotary Phase Converter:
Ye ek motor aur generator system hota hai jo single-phase supply produce karta hai.
Zyada reliable aur efficient hota hai.
**3. Transformer-based Method
Agar high voltage ko single-phase chahiye, to step-down transformer ka use karke ek single-phase system banaya ja sakta hai.
Connection: Three-phase ka ek ya do phase use karke transformer input mein diya jata hai aur output single-phase mein liya jata hai.
**4. VFD (Variable Frequency Drive)
VFD ka use karke three-phase input ko single-phase output mein convert kiya ja sakta hai.
Mostly motor speed control applications ke liye use hota hai.
Ye voltage aur frequency control kar sakta hai.
Harmonic Kam karne ke liye capacitor ka use Kiya hua hai
Capacitor for Stable power/ Noise free power
Capacitor is used for phase converted energy in one form to another form with capacitive load. Please explain another reason.
Thank you for this information pluspoint team.
Yes, you are right do share this video with others
Capacitor use in 3 phase because reactive load in induction current lagging behind voltage so manage power factor
Good .. there are also more reasons .. do share this video with others also
Then why capacitors are not used in 3 phase motors to manage power factor ۔ basically they are used in single phase motors for phase shif to produce field lines in coil ۔ and capacitors also have a property to control power factor
Sir 2 fase ko 3 fase kese karu mujhe 20 hp ki moter chelani hai
2-phase power cannot be directly converted into 3-phase power, but there are methods to operate a 3-phase motor, like your 20 HP motor, using a 2-phase supply. Here are a few common methods:
1. Rotary Phase Converter:
A rotary phase converter is a device that converts single-phase or 2-phase power to 3-phase power. It uses a motor-generator setup to generate the third phase. This is a common solution for running large motors like a 20 HP motor.
2. Static Phase Converter:
A static phase converter can also be used, but it is less efficient and is typically used for smaller motors. It creates a third phase by using capacitors to provide a temporary boost during startup. However, it doesn’t provide true 3-phase power, and the motor will not run at full capacity.
3. Variable Frequency Drive (VFD):
A VFD is a solid-state device that converts single-phase or 2-phase power into 3-phase power and also allows you to control the motor speed. For a 20 HP motor, you would need a VFD that can handle the power requirements. VFDs are efficient and offer the added benefit of speed control.
4. Phase Converting Transformer:
Another option is to use a phase converting transformer, which is specially designed to convert 2-phase power into 3-phase power. This is less common but can be effective for specific setups.
@@NiketShahPlus
Best kon sa hai isme
Sir please capacitor ke upar video banao
Ok will try.. do share this video with others also
Reactive power generation l liye
little bir correct .. do share this video with others
VFD sirf chota motor me aur fan pump esob me kam karte he kisne bola. 500 kw tak VFD Normal milte he. Schneider kam APM 800+ kw ka vi milta he.
You are wrong understand yes I know Vfd are working 800+ kw but it's 3 phase Vfd. He says single phase Vfd. Single phase Vfd only small motors running or small machines load motors running limit only not heavy motors run. I think you understand.
Who uses a single phase motor for heavy duty application?Go and clear your concepts first.
You are correct
Baffring, sumthing voltage karne ke liye capacitor ko lagayajata he
Sir class join kar ne ka praise key he
whatsapp me on 9768871110
KITNE KW LOAD DALL SAKTE HAI
depends upon the product
Bhai meri Water pump three phase ki hai. Kya main aese single phase se three phase bana sakta hu??
Not recommended
Capacitor is used for Phase Shifting
yes one of the work
Very nice topic normal person also anderstan youar topics
Thank you.. do share this video with others also
Hame "Rotary Transformer" Sikhya Jata Thaa, 50 Sal Pahele.
yes.. correct
Capacitor me voltage ko legs korna ka kosis korta hay isliye
Capacitor 1 phase banay ga
yes many more things do
Sir capiciter ka v vedeo bana dijye sir plz
will try to make video on this topic
hello sir, i think your guidance can help me. i have a 3 phase off grid solar setup of 10 kva at my workshop. with invertor of 3 phase inpiut and output.
Now the problem is that battery drain by evening when i run machines all day.
I have a single phase electricity connection also here but not able to give input supply to invertor. what is the ideal convertor in my case because i consulted few people and they said VFD is not suitable for me as i want to give supply to invertor so that batteries can be charged where as VFD is used on pumps or machine moters directly.
To address your issue of battery drainage in the evening and the inability to use your single-phase connection to charge your batteries through your three-phase inverter, here's a solution that could work for your setup:
Understanding the Setup:
Three-Phase Off-Grid Solar System: Your system is designed to generate and supply three-phase power, which is suitable for running heavy machinery.
Battery Drain: The batteries are getting drained by the evening because the solar power might not be sufficient to run your machines and charge the batteries simultaneously.
Single-Phase Grid Connection: You have a single-phase grid connection available, but you need to convert it to be usable with your three-phase inverter for battery charging.
Recommended Solution:
Single-Phase to Three-Phase Converter:
Purpose: This converter will take your single-phase input and convert it into three-phase output, which can then be supplied to your three-phase inverter.
Types of Converters:
Rotary Phase Converter: Suitable for heavy-duty applications where you need to convert single-phase power to three-phase power efficiently.
Static Phase Converter: More affordable but typically less efficient and not ideal for long-term heavy usage.
Digital Phase Converter: Modern solution that offers better efficiency, stability, and power quality compared to rotary and static converters.
Inverter Compatibility:
Before purchasing any converter, ensure that your inverter can accept a three-phase input generated by such a converter. Some inverters are sensitive to the quality of the input power, so it’s crucial to check the specifications or consult the inverter manufacturer.
VFD (Variable Frequency Drive):
Not Suitable for Your Case: As you correctly mentioned, a VFD is primarily used to control the speed of motors and is not intended for converting single-phase power to three-phase power for the purpose of feeding an inverter.
Implementation Steps:
Consult with an Electrician: Get a professional electrician to assess the power requirements of your inverter and help you select the appropriate single-phase to three-phase converter. They can ensure that the converter you choose is compatible with your inverter.
Install the Converter: Have the converter installed between your single-phase grid connection and the inverter’s input. Ensure all connections are properly made and safety protocols are followed.
Monitor Performance: After installation, monitor the system’s performance to ensure that the batteries are being charged effectively and that there are no issues with the inverter’s operation.
Alternative Solution:
If upgrading to a three-phase grid connection is feasible, this would eliminate the need for a converter altogether and provide a more stable and efficient power supply to your inverter for battery charging.
Sir bldc me bhi to single phase ko three phase me convert karte to wo vfd type mana jayega ya DPS type?
It’s different technique.. will try to make video on this also
@@NiketShahPlus ok
220/ 3 phase...3 phase voltage kitna hoga?
400v Or others
Same as in normal mode.. do share this video with others also
Many Use of capacitor
yes.. check karo mera pin wala comment.. also do share this video with others also
Power factor improve krne k liye
Many more work it is doing.. check comments
Why are we using Capacitor ?
will try to make video on this
चारों तरीक़े के कन्वर्टर में फेस डिफरेंस एंगल की डिग्री पर कोई चर्चा नहीं की गई।
हम अच्छी तरह जानते है कि RYB में 120 डिग्री के फेस का अंतर होता है। जाहिर है जब सिंगल फेस हो या डबल फेस हो फेस डिफरेंस 180 डिग्री होता है। जब सिंगल फेस के दोनों तार थ्री फेस के लिए सीधे जुड़े होंगे और 3रे तार से किस तरह 120 डिग्री का अंतर प्राप्त किया जा सकता है।
1. तीन-फेज सिस्टम में फेज डिफरेंस
तीन-फेज सिस्टम में, प्रत्येक फेज (R, Y, B) का फेज डिफरेंस 120° होता है। इसका मतलब है कि जब एक फेज अपने चरम पर होता है, तो दूसरे दो फेज समय-समय पर 120° और 240° पर होते हैं।
यह अंतर इसलिए होता है क्योंकि तीन-फेज सप्लाई के प्रत्येक फेज का साइन वेव एक निश्चित समय अंतराल के बाद शिफ्ट होता है।
2. सिंगल फेज और डबल फेज का फेज डिफरेंस
सिंगल फेज सप्लाई में केवल दो तार (फेज और न्यूट्रल) होते हैं, और इसका कोई फेज डिफरेंस नहीं होता क्योंकि इसमें केवल एक साइन वेव होती है।
डबल फेज सप्लाई (जैसा कि कभी-कभी दो अलग-अलग फेज को जोड़ने के लिए किया जाता है) का फेज डिफरेंस 180° होता है। ऐसा इसलिए है क्योंकि दोनों तारों के वोल्टेज एक दूसरे के बिल्कुल उलट (opposite polarity) होते हैं।
3. तीन-फेज से सिंगल-फेज कनेक्शन में फेज डिफरेंस का निर्धारण
जब सिंगल फेज के दो तार तीन-फेज से सीधे जोड़े जाते हैं, तो सिंगल फेज को तीन-फेज के किसी भी दो फेज से जोड़ सकते हैं। उदाहरण के लिए:
यदि आप R और Y को जोड़ते हैं, तो आपको 120° का अंतर मिलेगा।
यदि आप Y और B को जोड़ते हैं, तो भी अंतर 120° होगा।
परंतु अगर आप R और B को जोड़ते हैं, तो आपको 240° का अंतर मिलेगा, जो कि (360° - 120°) है।
4. 120° फेज डिफरेंस प्राप्त करने के लिए तीसरे तार का उपयोग कैसे करें?
तीन-फेज में किसी भी फेज के बीच वोल्टेज हमेशा अलग होता है। जब आप तीन तारों (R, Y, B) को एक साथ कनेक्ट करते हैं और फेज डिफरेंस को नियंत्रित करना चाहते हैं, तो आप एक फेज-शिफ्टिंग डिवाइस या ट्रांसफॉर्मर का उपयोग कर सकते हैं। यह सुनिश्चित करेगा कि आप तीसरे तार से वांछित 120° का अंतर प्राप्त करें।
निष्कर्ष
तीन-फेज सिस्टम में फेज डिफरेंस को समझना और इसे सिंगल या डबल फेज में लागू करना एक जटिल प्रक्रिया हो सकती है। यदि आप 120° फेज डिफरेंस प्राप्त करना चाहते हैं, तो आपको सटीक कनेक्शन और ट्रांसफॉर्मर का सही उपयोग करना होगा। यदि आप इस विषय पर व्यावहारिक या सैद्धांतिक रूप से और अधिक जानकारी चाहते हैं, तो मैं इस पर एक आरेख या वीडियो गाइड भी बना सकता हूँ।
सर मुझे सिर्फ ईन्वटर की थ्री फेज मेन्स सेन्स चेक करना है तो कौनसी मेथड सही होगा ईन सबमे
अगर आपको इन्वर्टर की थ्री फेज मेन्स सेंसिंग चेक करनी है, तो इन तरीकों में से सही और सुरक्षित तरीका चुनें:
1. Multimeter Method (Safest)
हर फेज और न्यूट्रल के बीच AC वोल्टेज चेक करें।
तीनों फेज का वोल्टेज बराबर (लगभग 220-240V) होना चाहिए।
2. Phase Sequence Meter
फेज सीक्वेंस मीटर का उपयोग करके फेज क्रम (R, Y, B) सही है या नहीं, यह जांचें।
3. LED Tester Method (Basic Check)
तीनों फेज पर LED इंडिकेटर लगाकर पता करें कि वोल्टेज मौजूद है या नहीं।
Kirloskar canopy 10kva 3phase जनरेटर को सिंगल फेज में कैसे कन्वर्ट करे.
will try to make video on this topic
AC to DC to AC electric se chalne wali train me ishi tarah ka concept hay.
Yes correct.. do share this video with others also
Ac dcenergy ower tables loredv whatis energy s in the simplest terms energy isthe ability to perform work it may exist in several froms such as heat energy ., maechanical energy ehemicsl energy or electricsl chemical energy in a storge battery become electrical energy flowing through a circuit that lights a lamp .light energy and heat energy .or from to anther .dnergy can not be creeated or de stroyed . So the same relation shipes of energy transformation slways apply
Table energy relation ships .
Electrical auto cad ki kya fees h
course he hamare pass. do whatsapp us on 9768871110
Sir digital phase ki priess Bata da ga plz reply me
matlab?
why not use transformar ?
Using a transformer alone to convert single-phase power to three-phase power is not feasible due to the fundamental differences in the nature of single-phase and three-phase electrical power. Here are the key reasons why a transformer alone cannot achieve this conversion:
Nature of Single-Phase and Three-Phase Power:
Single-Phase Power: Consists of a single alternating voltage wave, with current flowing in one phase wire and returning through a neutral wire.
Three-Phase Power: Consists of three alternating voltage waves, each 120 degrees out of phase with the others, providing a more balanced and continuous power supply.
Phase Relationship:
A transformer cannot create the necessary 120-degree phase shift between the three phases needed for three-phase power from a single-phase input. Transformers only change voltage levels; they do not create additional phases or alter the phase relationship between input and output.
Balanced Load Distribution:
Three-phase power systems distribute the electrical load more evenly across the phases, reducing the load on any single phase and improving efficiency. Single-phase power cannot provide this balanced distribution.
Thanks...
Welcome do share this video with others also
Atta chakki ke motor chal jaye ge 10 hp ke
good to know.. do share this video with others
Home bldc fan bhi use this kind of technology
It’s bit different.. we have already made video on this topic.. check karo
हेलो सर
T/F से 2 वायर आते है
1: phase। 2 neutral
तो क्या हम इसे सिंगल phase कहते है इसे हमे 3 फ्रेस में कन्वर्ट करना है
यदि ह तो क्या मोटर या अन्य उपकरणों को phase चाहिए neutral नहीं चाहिए
यदि हम बल्ब को phase दे तो खराब हो जाएगा
मोटर तीन phase पर कैसे चलता है न्यूट्रल नहीं चाहिए इसे ।
क्या 3 फैंस में कोई different होता हैं
Example फ्रीक्वेंसी , voltage etc.
लो!
जी हां, अगर आपके पास T/F (ट्रांसफार्मर) से केवल दो वायर आ रहे हैं - एक फेज (Phase) और एक न्यूट्रल (Neutral) - तो इसे सिंगल फेज सप्लाई कहते हैं। सिंगल फेज सिस्टम में सिर्फ एक ही फेज होता है और इसे घरेलू उपकरणों में इस्तेमाल किया जाता है।
सिंगल फेज को 3-फेज में कन्वर्ट करने के लिए आमतौर पर एक फेज कन्वर्टर का उपयोग किया जाता है। फेज कन्वर्टर अलग-अलग प्रकार के होते हैं, जैसे कि:
रोटरी फेज कन्वर्टर - यह एक मोटर की तरह काम करता है और एक सिंगल फेज इनपुट से तीन फेज आउटपुट देता है।
स्टैटिक फेज कन्वर्टर - यह थोड़ी देर के लिए मोटर को चालू करने के लिए आवश्यक तीसरे फेज को उत्पन्न करता है, लेकिन यह हर समय तीन फेज आउटपुट नहीं देता।
वीएफडी (Variable Frequency Drive) - यह एक इलेक्ट्रॉनिक कन्वर्टर है जो इनपुट को बदलकर तीन फेज आउटपुट प्रदान करता है और गति भी नियंत्रित कर सकता है।
आपको किस प्रकार का फेज कन्वर्टर चाहिए, यह आपके उपयोग और आवश्यकताओं पर निर्भर करेगा।
Capasiter vidio banavo
Ok sure will try
Capasiter singal phase electric energy ko store kar ke 3 phase me convert kar ke output deta h ⚡⚡⚡
will try to make video on this topic