Find the area of the trapezoid Important Geometry skills explained

Поделиться
HTML-код
  • Опубликовано: 11 фев 2025
  • Find the area of the trapezoid Important Geometry skills explained #geometryskills #mathpuzzles
    We are required to find the area of the blue triangle.
    This will be so much appreciated.
    ☕www.buymeacoff...
    grayyeonmath
    Important Geometry skills explained
    Rectangles
    circles
    Right Triangle
    similarity of triangles
    ratio and proportion
    ratio
    geometry
    Find the length X
    quadratic equations
    completing the squares,quadratic equations
    algebra
    maths
    line segment
    midsegment theorem
    brian mclogan
    area
    find the length
    satmath
    midpoint
    length
    width
    triangles
    similar triangles
    math
    igko
    pythagorean theorem problem solving,
    pythagorean theorem word problems,
    right triangles
    mathematics
    gre
    premath
    premath.com
    ixl
    prmo
    #grayyeonmath
    #ImportantGeometryskillsexplained
    #rectangles
    #circles
    #righttriangles
    #similarityoftriangles
    #triangles
    #ratioandproportion
    #proportional
    #ratio
    #geometryskills
    #Findthelength
    #quadraticequations
    completing the squares,
    #quadraticequation
    #equations
    #algebra,
    #mathpuzzles
    #maths
    #linesegment
    #midsegmenttheorem
    #brianmclogan
    #area
    #findthelength
    #trigonometricratios
    #mathpuzzles
    #midpoint
    #length
    #width
    #triangles
    #similartriangles
    #triangles
    #math
    #igko
    #pythagoreantheoremproblem solving,
    #pythagorean theorem word problems,
    #righttriangles
    #triangles
    #mathematics
    #green
    #premath
    #satmath
    #ixl
    #prmo

Комментарии •

  • @Okkk517
    @Okkk517 Год назад +2

    “a” and “b” can be determined without the assumption that they are integers. Actually, solving the equations 4a*b+a^2=17 and 4a*b+b^2=32 simultaneously gives us a=1 and b=4 where we use the relation h^2=(a+b)^2-(b-a)^2=4a*b.

    • @smaari
      @smaari Год назад

      how did you figure out that 4a*b+a^2=17 and 4a*b+b^2=32?

    • @Okkk517
      @Okkk517 Год назад

      We can easily see that h^2+a^2=17 and h^2+b^2=32 where we use the relation h^2=(a+b)^2-(b-a)^2=4a*b to arrive to the equations 4a*b+a^2=17 and 4a*b+b^2=32.

    • @PS-mh8ts
      @PS-mh8ts Год назад +1

      also, nowhere in the problem statement does it say that a and b are integers.

  • @mineralstones5161
    @mineralstones5161 Год назад +6

    why you consider that a and b are integer numbers maybe they are not integers in b^2-a^2=15 ?

    • @Okkk517
      @Okkk517 Год назад +3

      Yes you are right “a” and “b” can be determined without the assumption that they are integers. Actually, solving the equations 4a*b+a^2=17 and 4a*b+b^2=32 simultaneously gives us a=1 and b=4.

    • @soli9mana-soli4953
      @soli9mana-soli4953 Год назад

      my own perplexity

    • @soli9mana-soli4953
      @soli9mana-soli4953 Год назад

      @@Okkk517 which way is the most convenient? I try by sostitution... (b=17-a²/4a)

  • @dantallman5345
    @dantallman5345 Год назад

    The diagonal 4 sqrt2 actually demands that b=h=4 given that b and h are perpendicular to each other. Right? Then a=1 based on the sqrt 17 and h=4. No ambiguity.
    Since the figure included a circle, I was initially bound and determined to use inscribed circle/triangle relationships. I didn’t, but it made me think in terms of having a large, inscribing triangle made by adding a smaller, similar triangle to the top of the trapezoid. The small triangle is 1/4 of the big, for any length dimension, therefore 1/16 the area. Therefore the trapezoid is 15/16 of the big triangle. Big triangle has base 8, sides 20/3, 20/3, and height 16/3. Area 64/3. Multiplying by 15/16 gives trapezoid area of 20. (Or just calculate the trapezoid directly from a,b,h. D’oh!🤪).

  • @StephenRayWesley
    @StephenRayWesley Год назад

    4√2=,( 16 )^2(1) √(17)^2(1) =196 +(1)=289 (288+196)=484 (484-100)=√384 2√^19√ 2^2 √2^√1 1^2 √1 1^2 (x+1x-2)

  • @santiagoarosam430
    @santiagoarosam430 Год назад +1

    La figura es simétrica respecto al diámetro vertical, cuya longitud es 2r.
    Longitud base =2b; longitud lado superior =2a
    El segmento de longitud 4sqr2 sugiere que b=2r=4》r=2 》 Si 17=a^2 +4r^2=a^2+16》a=1 》La hipótesis de partida se ajusta a las premisas del trazado geométrico propuesto 》》Área del trapecio =(4+1)4=20
    Gracias y saludos.

    • @soli9mana-soli4953
      @soli9mana-soli4953 Год назад

      Que sea b=2r=4 tambièn se confirma haciendo:
      (a+b)² = (2r)² + (a-b)²
      (1+4)² = 4² + (4-1)²
      Nice solution!!

    • @dantallman5345
      @dantallman5345 Год назад

      Yes!

  • @ВерцинГеториг-ч5ь

    (4\/2)*2-в*2=(\/17)*2-а*2 , 32-в*2=17-а*2 , в*2-а*2=15 , (\/17)*2-а*2=(в+а)*2-(в-а)*2 , 17-а*2=4ва , ( h*2=4ва ) , а*2+4ва=17 . (в*2-а*2=15) х 17 , (а*2+4ва=17) х 15 , (17в*2-17а*2=255) - (15а*2+60ва=255) , 17в*2-32а*2-60ва=0 , 17в*2/а*2-32а*2/а*2-60ва/а*2 =0 , 17в*2/а*2-32-60в/а=0 , 17в*2/а*2-60в/а-32=0 , в/а=у , 17у*2-60у-32=0 , у1,2=(60+-\/3600+4х17х32)/2х17=(60+-\/5776)/34 , = (60+-76)/34 , у1=(60+76)/34=4 , у2=(60-76)/34=-8/17 - негатив , у=в/а =4 , в=4а , в*2-а*2=15 , (4а)*2-а*2=15 , 16а*2-а*2=15 , а = 1, в=4а=4х1=4 , h=2\/ва=2\/4х1=2х2=4 , А=((2а+2в)/2)хh =(а+в)хh =(1+4)х4=20 .